Bloom Filter Based Routing for Content-Based Publish/Subscribe

DEBS 2008

Zbigniew Jerzak and Christof Fetzer

Systems Engineering Group, Dresden University of Technology

Wednesday 2nd July, 2008
Event forwarding ([CRW01]: siena, [TK06]: forest)
Subscription routing ([CRW01]: siena, [TK06]: forest)
Motivation

- Efficient End-to-End transmission delays
- More flexible edge routing approach [JF07]
- A flexible communication substrate for event processing systems
Our Contributions

- New routing structures and algorithms:
 - applicable for both traditional and edge routing
 - `sbsposet` – predicate storage and coverage
 - `sbstree` – management of disjunctions of predicates
 - conjunctions

- Content summarisation using Bloom filters [Blo70]
 - not imposing any limitation on the type and content of the events/subscriptions
 - sparse Bloom filters for space complexity
Our Contributions

- New routing structures and algorithms:
 - applicable for both traditional and edge routing
 - **sbsposet** – predicate storage and coverage
 - **sbstree** – management of disjunctions of predicates and conjunctions

- Content summarisation using Bloom filters [Blo70]
 - not imposing any limitation on the type and content of the events/subscriptions
 - sparse Bloom filters for space complexity
Publish/Subscribe Model

- Decoupled [EFGK03] communication...
 - ...between publishers and subscribers via routers
 - ...using subscriptions (conjunction of predicates)
 - ...and events (disjunction of predicates)
 - ...based on their content
Publish/Subscribe Model

- Decoupled [EFGK03] communication...
- ...between publishers and subscribers via routers
 - ...using subscriptions (conjunction of predicates)
 - ...and events (disjunction of predicates)
 - ...based on their content
Publish/Subscribe Model

- Decoupled [EFGK03] communication...
- ...between publishers and subscribers via routers
- ...using subscriptions (conjunction of predicates)

\[
\begin{aligned}
\{ & \text{movie} = "star wars" \quad \text{AND} \quad \text{price} < 15 \\
& \quad p_0() \quad \text{AND} \quad p_1() \}
\end{aligned}
\]

- ...and events (disjunction of predicates)
- ...based on their content
Publish/Subscribe Model

- Decoupled [EFGK03] communication...
- ...between publishers and subscribers via routers
- ...using subscriptions (conjunction of predicates)
- ...and events (disjunction of predicates)

\[
\begin{align*}
\text{movie} &= "batman" \\
\text{price} &= 15.5
\end{align*}
\]

...based on their content
Publish/Subscribe Model

- Decoupled [EFGK03] communication...
- ...between publishers and subscribers via routers
- ...using subscriptions (conjunction of predicates)
- ...and events (disjunction of predicates)
- ...based on their content
Event forwarding

An event e matches a subscription s ($e \preceq s$)

$$\forall p \in s \quad \exists \{an, av\} \in e : \quad p(\{an, av\}) = \text{true} \quad (1)$$

A broker contains $|S|$ subscriptions:

$$\forall s \in S : \quad \text{execute Equation 1} \quad (2)$$
Approach

An event e matches a subscription s ($e \preceq s$)

$$\forall p \in s \exists \{an, av\} \in e : p(\{an, av\}) = true$$

Evaluate predicate functions
Approach

An event e matches a subscription s ($e \prec s$)

$$\forall p \in s \quad \exists \{an, av\} \in e : \quad p(\{an, av\}) = \text{true}$$

Calculate of disjunction of conjunctions of predicates
Overview: Subscription Routing

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
Overview: Subscription Routing

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
Overview: Subscription Routing

Motivation

Background & Overview

SBSPoset & SBSTree

Evaluation

Summary

9 of 27 slides
Overview: Subscription Routing

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
Overview: Subscription Routing

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
Overview: Event Forwarding

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
Overview: Event Forwarding
Overview: Event Forwarding

Bloom Filter Based Routing for Content-Based Publish/Subscribe
Zbigniew Jerzak and Christof Fetzer
Overview: Event Forwarding
Overview: Event Forwarding

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
SBSPoset

- Stores subscriptions as:
 - disjunction of single predicates
 - ordered by the coverage relation
- Every predicate is assigned a Bloom filter
 - which summarizes its content
 - and that of covering predicates
- No limitations on the expressiveness of the subscription/event language
SBSPoset: subscription storage

x
null
≥0.7
{2787, 12518}
>5
{2787, 6066, 8581, 12518}

y
null

<5

=0

{5037, 8516}
{5001, 5037, 8507, 8516}
SBSPoset: subscription storage

New subscription: \(x > 15 \) \(y > 0 \)

- **SBSPoset**:
 - Subscription storage
 - \(x > 15 \)
 - \(y > 0 \)
 - \(x = \text{null} \)
 - \(y \geq 0.7 \)
 - \(>5 \) \(<5 \)
 - \(=0 \)
 - \(\{2787, 12518\} \)
 - \(\{2787, 6066, 8581, 12518\} \)
 - \(\{5037, 8516\} \)
 - \(\{5001, 5037, 8507, 8516\} \)

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
SBSPoset: subscription storage

New subscription:

\[x > 15 \quad y > 0 \]

- \(x \geq 0.7 \)
- \(x > 5 \)
- \(x \leq 5 \)
- \(y \geq 0 \)
- \(y > 0 \)
- \(y = 0 \)
SBSPoset: subscription storage

New subscription:

\[x > 15 \quad y > 0 \]

\[\{5001, 5037, 8507, 8516\} \]
SBSPoset: subscription storage

New subscription:

\(x > 15 \) \(y > 0 \)

- \(x \): null
- \(y \): null

- \(x \): \(\geq 0.7 \)
 - \(\{2787, 12518\} \)
 - \(\{2787, 6066, 8581, 12518\} \)
- \(y \): \(> 5 \)
 - \(\{6441, 10582\} \)
 - \(\{5102, 8636\} \)
- \(x \): \(> 15 \)
 - \(\{2787, 6066, 6441, 8581, 10582, 12518\} \)

- \(y \): \(= 0 \)
 - \(\{5001, 5037, 8507, 8516\} \)

- \(y \): \(\leq 0.7 \)
 - \(\{5037, 8516\} \)

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
SBSPoset: subscription storage

New subscription:

- \(x > 15\) and \(y > 0\)
- \(\{5102, 8636\}\)
- \(\{5102, 8636\}\)

Tree structure:

- \(x\)
 - null
 - \(\geq 0.7\)
 - \(\{2787, 12518\}\)
 - \(>5\)
 - \(\{2787, 6066, 8581, 12518\}\)
 - \(>15\)
 - \{2787, 6066, 6441, 8581, 10582, 12518\}

- \(y\)
 - null
 - \(<5\)
 - \(\{5037, 8516\}\)
 - \(=0\)
 - \{5001, 5037, 8507, 8516\}
 - \(>0\)
 - \{5001, 5037, 8507, 8516\}

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
SBSTree

- Represents the disjunction of conjunctions of subscriptions’ predicates:
 - stores only Bloom filters
SBSTree: subscription storage

New subscription: $x > 15$ and $y > 0$

Subscriptions:
- f4@dot.com
- f5@dot.com
- f1@dot.com
- f3@dot.com
- f2@dot.com

{6441, 10582} and {5102, 8636}
SBSTree: subscription storage

New subscription:

\[
\begin{align*}
x &> 15 \\
y &> 0
\end{align*}
\]

\{6441, 10582\} \quad \{5102, 8636\}
SBSTree: subscription storage

New subscription:

x > 15
y > 0

{6441, 10582}
{5102, 8636}
SBSPoset: event forwarding

Event: \(x=7 \) \(y=-2 \)

- \(x \)
 - null
 - \(\geq 0.7 \) \(\{2787, 12518\} \)
 - \(>5 \) \(\{2787, 6066, 8581, 12518\} \)
 - \(>15 \) \(\{2787, 6066, 6441, 8581, 10582, 12518\} \)

- \(y \)
 - null
 - \(<5 \) \(\{5037, 8516\} \)
 - \(=0 \) \(\{5001, 5037, 8507, 8516\} \)
 - \(>0 \) \(\{5102, 8636\} \)
SBSPoset: event forwarding

Event: \(x = 7 \) \(y = -2 \)

- \(x \)
 - null
 - \(\geq 0.7 \) → \{2787, 12518\}
 - \(> 5 \) → \{2787, 6066, 8581, 12518\}
 - \(> 15 \) → \{2787, 6066, 6441, 8581, 10582, 12518\}

- \(y \)
 - null
 - \(< 5 \) → \{5037, 8516\}
 - \(= 0 \) → \{5001, 5037, 8507, 8516\}
 - \(> 0 \) → \{5102, 8636\}
SBSPoset: event forwarding

Event: x=7, y=-2

Bloom Filter Based Routing for Content-Based Publish/Subscribe
Zbigniew Jerzak and Christof Fetzer
SBSPoset: event forwarding

Event: \(x=7\) \(y=-2\)

- **x**
 - null
 - \(\geq 0.7\)
 - \(\{2787, 12518\}\)
 - \(>5\)
 - \(\{2787, 6066, 8581, 12518\}\)
 - \(>15\)
 - \(\{2787, 6066, 6441, 8581, 10582, 12518\}\)

- **y**
 - null
 - \(<5\)
 - \(\{5037, 8516\}\)
 - \(>0\)
 - \(\{5102, 8636\}\)

Note: The diagram represents the structure and decision process for event forwarding in the context of SBSPoset.
SBSPoset: event forwarding

Event: \(x = 7 \) \(y = -2 \)

```
x
null
≥ 0.7
> 5
> 15
{2787, 12518}
{2787, 6066, 8581, 12518}

y
null
≤ 0.7
< 5
= 0
{5037, 8516}
{5001, 5037, 8507, 8516}

> 0
{5102, 8636}
```

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
SBSPoset: event forwarding

Event:

- $x = 7$
- $y = -2$

Dataset:

- $\{2787, 6066, 8581, 12518\}$

Trees:

- **SBSPoset**
 - x:
 - null
 - ≥ 0.7
 - > 5
 - > 15
 - $\{2787, 6066, 8581, 12518\}$

- **SBSTree**
 - y:
 - null
 - < 5
 - $= 0$
 - > 0
 - $\{5001, 5037, 8507, 8516\}$
 - $\{5102, 8636\}$

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
SBSPoset: event forwarding

Event: \(x=7 \)
\{2787, 6066, 8581, 12518\}

Event: \(y=-2 \)
\{5037, 8516\}

\(x \geq 0.7 \)
\{2787, 12518\}

\(x > 5 \)
\{2787, 6066, 8581, 12518\}

\(x > 15 \)
\{2787, 6066, 6441, 8581, 10582, 12518\}

\(y \)
\{null\}

\(y < 5 \)
\{5037, 8516\}

\(y = 0 \)
\{5001, 5037, 8507, 8516\}

\(y > 0 \)
\{5102, 8636\}
SBSPoset: event forwarding

Event: \(x = 7 \) \(y = -2 \)

\[
\begin{align*}
&x \\
&\quad \rightarrow \text{null} \\
&\quad \downarrow \quad \geq 0.7 \\
&\quad \downarrow \quad > 5 \\
&\quad \downarrow \quad > 15 \\
&\{2787, 2506, 8581, 12518\} \\
&\quad \downarrow \quad \leq 0.7 \\
&\quad \downarrow \quad < 5 \\
&\quad \downarrow \quad < 0 \\
&\quad \downarrow \quad = 0 \\
&\quad \downarrow \quad \geq 0 \\
&\{5001, 5037, 8507, 8516\} \\
&\downarrow \\
&\{5102, 8636\}
\end{align*}
\]
SBSPoset: event forwarding

Event:
- $x = 7$
- $y = -2$

Evaluation:
- $x \geq 0.7$
- $x > 5$
- $x > 15$
- $x < 5$
- $x = 0$
- $x = 0$

- $y \geq 0.7$
- $y > 5$
- $y > 15$
- $y < 5$
- $y = 0$

- $\{5037, 8516\}$
- $\{2787, 6066, 8581, 12518\}$
- $\{2787, 6066, 8581, 12518\}$
- $\{2787, 6066, 8581, 10582, 12518\}$
- $\{5001, 5037, 8507, 8516\}$
- $\{5102, 8636\}$

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
SBSPoset: event forwarding

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
SBSTree: event forwarding

```
null

5037
  └── 8516
    └── f4@dot.com

5102
  └── 6441
    └── 8636
      └── f6@dot.com

5001
  └── 8507
    └── f5@dot.com

6066
  └── 8581
    └── f1@dot.com

6441
  └── 10582
    └── f3@dot.com

2787
  └── 12518
    └── f2@dot.com
```

Event: \(x=7 \) \(y=-2 \)

\(\{2787, 5037, 6066, 8516, 8581, 12518\} \)
SBSTree: event forwarding

Event: \(x=7 \) \(y=-2 \)

\{2787, 5037, 6066, 8516, 8581, 12518\}
SBSTree: event forwarding

null

5037
5102
5001
6066
6441
2787
8516
6441
8507
8581
10582
12518
f4@dot.com
f5@dot.com
f1@dot.com
f3@dot.com
f2@dot.com
8636
10582
f6@dot.com

Event: x=7, y=-2

{2787, 5037, 6066, 8516, 8581, 12518}
SBSTree: event forwarding

Event: $x = 7$, $y = -2$

{2787, 5037, 6066, 8516, 8581, 12518}
Evaluation Environment

- SIENA 1.5.4
- Apache Mina
- Stochastic Simulation in Java (SSJ) library
- BloomFilter
Evaluation Environment

- SIENA 1.5.4
- Apache Mina
 - http://mina.apache.org/
 - ver. 2.0.0-M1 as of 24th Jan 2008
- Stochastic Simulation in Java (SSJ) library
- BloomFilter
Evaluation Environment

- SIENA 1.5.4
- Apache Mina
- Stochastic Simulation in Java (SSJ) library
 - umontreal.iro.lecuyer.randvar.*
 - umontreal.iro.lecuyer.rng.*
- BloomFilter
Evaluation Environment

- SIENA 1.5.4
- Apache Mina
- Stochastic Simulation in Java (SSJ) library
- BloomFilter
 - http://wwwse.inf.tu-dresden.de/xsiena
 - Based on code by: Hongbin Liu and Arash Partow
Event forwarding

Bloom Filter Based Routing for Content-Based Publish/Subscribe
Zbigniew Jerzak and Christof Fetzer
Subscription routing

![Graph showing time vs. number of filters for different routing methods](image-url)

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
TCP/IP Latency

The graph shows the latency in microseconds (µs) for different numbers of events and brokers. The x-axis represents the latency in microseconds, while the y-axis represents the number of events. The graph includes data for local and distributed brokers with 1, 2, and 3 brokers. The data indicates a decrease in latency with an increase in the number of brokers.
TCP/IP Throughput

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
Local Throughput

![Graph showing local throughput with different distributions and event rates.](image-url)
False Positives

![Graph showing false positives vs. number of delivered events](image)

- % false pos, log₂m=12, k=4
- % false pos, log₂m=13, k=4
- % false pos, log₂m=13, k=5
- % false pos, log₂m=13, k=6

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
Bloom Filter vs Sparse Bloom Filter

![Graph comparing memory consumption (KB) vs. number of elements inserted for Bloom filter and Sparse Bloom filter.](image)

- **Bloom filter** shows a flat line, indicating minimal memory consumption regardless of the number of elements inserted.
- **Sparse Bloom filter** shows a steady increase in memory consumption as the number of elements inserted grows.

- **Memory Consumption (KB)**
 - **Y-axis**: 10^3 to 10^6
 - **X-axis**: 0 to 120000

- **# Elements Inserted**
 - Increments: 0, 20000, 40000, 60000, 80000, 100000, 120000

Bloom Filter Based Routing for Content-Based Publish/Subscribe

Zbigniew Jerzak and Christof Fetzer
Summary

- Low latency, high throughput
- Event forwarding based on Bloom filters
- No restrictions on the subscription language
- Decoupled management of predicates and their conjunctions
Thank You!

http://wwwse.inf.tu-dresden.de/xsiena/
References

Burton H. Bloom.
Space/time trade-offs in hash coding with allowable errors.

Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf.
Design and evaluation of a wide-area event notification service.

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
The many faces of publish/subscribe.

Zbigniew Jerzak and Christof Fetzer.
Prefix forwarding for publish/subscribe.

Sasu Tarkoma and Jaakko Kangasharju.
Optimizing content-based routers: posets and forests.