Leader Election in the Timed Finite Average Response Time Model

Martin Süßkraut; Christof Fetzer
martin.suesskraut@tu-dresden.de; christof.fetzer@tu-dresden.de

PRDC'6, 12/19/2006
Motivation
Denial of Service Attacks
Leader Election Problem

• **Liveness**
 Eventually there will be **one** leader forever.

• **Safety**
 At any point in time there is at most one leader.

• **Our Contribution**
 solve Leader Election without any synchrony
Finite Average Response Time Model

• no synchrony, no stability, however in balance

• average response time is finite
• congestion control
• no infinite speed of computation
Flow Control
Extreme Response Times

Async. System

FAR
◊P

- know how to solve ◊P
 ⇒ Consensus is solvable
- ◊P maintains a timeout
 - grows with small response times
 - shrinks with large response times
 - eventually timeout will be “perfect”
Leader Election in FAR

Run 1

\(p \quad \rightarrow \quad t \quad \rightarrow \quad q \)

\(s \)
Leader Election in FAR

Run 1

\[\text{Run 2} \]

\[\text{Run 2} \]

\[\text{Run 2} \]

\[\text{Run 2} \]
Timed FAR

- assume clocks with bounded drift rate ρ

$C_p(s) + \delta$

$s \rightarrow t$

$\delta = t - s$

$C_p(t)$

$C_p(s) + \delta$

$\rho(t - s)$

Real time

Clock time
Approach

• **Safety:** leases
 – each process supports at most one leadership at any point in time
 – leader must be supported by majority

• **Liveness:** ♦P
 – unsuspected process with smallest id
 – lease time bases on ♦P's timeout
Summary

• Leader Election solvable
 – NO synchrony
 – NO stable periods
• with reasonable asynchronous assumptions and clocks
• rely on internal timeout of ♦P

• complete algorithm is on poster