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CPU scaling

Based on data from the CPU DB 
[cpudb.stanford.edu]2



Power scaling

Based on data from the CPU DB 
[cpudb.stanford.edu]3



Cache scaling

Based on data from the CPU DB 
[cpudb.stanford.edu]4



Multi-/many-cores are here
● Multi-cores are the answer to increasing CPU 

performance despite the “3 walls” 
● Power wall: higher clock speeds require more power and 

create thermal problems 
● Memory wall: gap between CPU and memory speeds 
● ILP wall: not enough instruction-level parallelism to keep 

the CPU busy 

● Single-thread performance does not improve 
… but we can put more cores on a chip 

● To take advantage of multi-cores we have to 
develop concurrent code
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Parallelism: a HW perspective
Based on slide by R. Rajwar (Intel)
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Workloads and parallelism

● Data can be partitioned 
→ data parallelism 
● Split data, distribute to CPUs, 

process in parallel 

● Work split in phases 
→ pipeline parallelism 
● Each CPU responsible for some 

phase(s) 

● Access to shared data 
→ task parallelism 
● Critical sections for 

synchronization 
● Few conflicts ⇒ speculative/

optimistic parallelism
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CPU CPU
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CPUCPU

Lock-/obstruction-/wait-free?
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Concurrent programming is hard
● Hard to make correct and efficient 

● We need to exploit parallelism 
● Need to identify and manage concurrency 

● The human mind tends to be sequential 

● Concurrent specifications 
● Non-deterministic executions 

● What about races? deadlocks? livelocks? 
starvation? fairness? 
● Need synchronization (correctness)… 
… but not too much (performance)
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Concurrency tradeoffs
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Why is that important?

Speedup= 1

1− p+ p
n

Amdahl’s law 
Relationship between 
the parallel part of a 

program and the 
speedup is not linear!
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Speculative parallelism with TM
● Exploit parallelism across threads 

● Goal: serialize execution only when necessary 
● Approach: execute speculatively in parallel (optimistic 

non-blocking execution) 

● Transactional memory (TM) 
● Critical sections execute in transactions (=units of work 

that modify data and either commit, or abort/restart) 
● Transactions run isolated from one another 
● Writes are buffered, become visible upon commit 
● The programmer only has to identify parallel regions 

and enclose them within transactions
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TM in a nutshell
● TM can simplify concurrent programming 

● Sequence of instructions executed atomically 
● BEGIN … READ / WRITE … COMMIT 

● Optimistic CC: upon conflict, rollback & restart 
● Alleviates problems of locks: both safe and scalable 

● Simple API 
● Language support (e.g., 

new keyword and 
attributes in C++)

T2

T1
B W R→A W R W→A W R W C→A

B W CR

W R W C

B R CW B W CW B R CR

__transaction_atomic
{
  x = map.remove(key);
  set.add(x);
}
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Research on TM
● Active field of research since 2003 

● Algorithms for TM 
● Hardware and hybrid designs 
● Language constructs 
● OS support, (RT) scheduling 
● Runtime and libraries, GC 
● TM for dependability 
● Applications (e.g., game/application servers, DB) 
● Contention management (liveness), theory 
● Distributed TM, cloud/cluster deployments 
…

http://research.cs.wisc.edu/trans-memory/biblio/index.html
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A brief (partial) history of TM
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Intel’s HTM (x86)
● Intel transactional synchronization extensions TSX 

has 2 interfaces 

1. Hardware Lock Elision (HLE) 
● Lock-granularity optimizations: execute lock-protected 

critical sections transactionally without acquiring lock 
● Exploit hidden concurrency (automatic parallelization) 
● Binary is backward compatible  

2. Restricted Transactional Memory (RTM) 
● More powerful/flexible for speculative execution 
● Can also be used for HLE 
● Requires checking CPU type in binary
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HTM and HLE
● HTM can support hardware lock elision (HLE) 

● Developer uses “coarse-grain” locking 
● Easy to reason about and prove correct 

● Hardware elides locks and provides “fine-
grain” locking performance 
● Detects actual data conflicts, may abort and restart

lock

“Fine grain performance at coarse grain effort”

lock

lock

locklocklocklock

lockHLE
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Speculative execution with HLE
Thread 1

acquire

release

Critical 
section

Thread 2

acquire

release

Critical 
section

With locks

CS

CS

• Serial 
execution 

• Lock 
transfer 
latencies

Without locks and conflicts

CS CS
• Concurrent 

execution 

• No lock 
transfer 
latencies

Data structure

lock

• Lock remains free 
throughout 
execution 

• Upon conflict, 
restart with lock
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HLE
● Hint inserted in front of LOCK operation to 

identify a region candidate for lock elision 
● Prefixes XACQUIRE and XRELEASE 
● Hints ignored by non-TSX processors 

● Region executed speculatively in transaction 
● Does not acquire lock (but watch for modifications) 
● Tracks load, buffers stores, checkpoints registers 
● Attempts to commit 
● If HW cannot commit (e.g., conflict), restart and execute 

non-speculatively by acquiring lock
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HLE example
Based on slide by R. Rajwar (Intel)

acquire_lock(mutex);
/* critical section */
release_lock(mutex);

Application

      mov eax, 1
try:  lock xchg mutex, eax
      cmp eax, 0
      jz success
spin: pause
      cmp mutex, 1
      jz spin
      jmp try

Acquire lock (library)

      mov mutex, 0
Release lock (library)

      mov eax, 1
try:  xacquire lock xchg mutex, eax
      cmp eax, 0
      jz success
spin: pause
      cmp mutex, 1
      jz spin
      jmp try

Acquire lock with HLE (library)

HLE

      xrelease mov mutex, 0
Release lock with HLE (library)

HLE

Code example from Intel
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RTM
● RTM introduces new instructions 

● Demarcate critical sections with XBEGIN/XEND 
● Speculative execution as HLE but no lock involved 
● If transaction cannot commit atomically, abort and 

execute handler specified by XBEGIN
● Abort information returned in EAX register 
● Software can also explicitly abort with XABORT 

● XTEST instruction can be used by SW to determine if in 
active HLE or RTM region
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RTM example
Based on slide by R. Rajwar (Intel)

acquire_lock(mutex);
/* critical section */
release_lock(mutex);

Application

retry:  xbegin abort
        cmp mutex, 0
        jz success
        xabort $0xff
abort:
      ; check EAX, maybe first
      ; retry speculatively,
      ; otherwise acquire lock …

…       mov eax, 1
try:    lock xchg mutex, eax
        cmp eax, 0
        jz success
spin:   pause
        cmp mutex, 1
        jz spin
        jmp try

Acquire lock with RTM (library)

        cmp mutex, 0
        jnz unlock
        xend …

…
unlock: mov mutex, 0

Release lock with RTM (library)

Code example from Intel
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TSX implementation notes
● Write buffering using L1 cache (32KB) 

● Writes visible to other threads only after commit 
● Cache line granularity: eviction ⇒ abort, ⚠false sharing 

● Cache size/associativity can be a limit 

● Conflict detection for reads and writes 
● L1 tracks addresses read/written in TSX region 
● Conflicts detected using cache coherence protocol 

● Transactional commit 
● Transactional updates visible instantaneously 

● Transactional abort discards all updates
22



HTM benefits

● Improve performance of 
lock-based code 
● Both coarse-grain and fine-

grain applications 

● Simplify programming 
● Lock-free algorithms hard to 

make/prove correct! 
● HTM provides lock-free 

behavior for lock-based code 
(if possible) 
● Use locks for critical sections 
● Let HW extract concurrency

Based on slide by R. Rajwar (Intel)

Fine-grain + HTM
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Lock-based + HTM

Graphs not based on real data
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More benefits
● Lock-free programming: 

● sometimes we would need a DCAS, etc 

● RTM helps to implement such DCAS 

●



Progress?

● Obstruction-free programming: 
● difficult to achieve wait-free guarantees 

● guarantee to make progress while no other 
threads conflict 

● thread backs-off if it sees contention (i.e., 
transaction aborts)



IBM’s HTM (POWER8)
● Similar API: tbegin, tend, tabort, tcheck

● Transactions can be suspended: tsuspend, tresume
● Inter-thread communication, stores that should not roll back, … 

● Conflicts management at cache block granularity 
● Transactions can be nested (flat nesting: inner 

transactions aborts all enclosing ones) 
● No guarantee of fairness/progress provided by HW

start:  tbegin
        bne abort ; Aborted?

      ; execute transactionally

        tend
abort:
        b start ; Retry

POWER8 HTM
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HTM in practice
● Intel TBB provides 

● HLE-based speculative_spin_mutex
● RTM-based speculative_spin_rw_mutex

● Intel OpenMP features RTM-based lock elision 

● Experimental HLE-based lock elision support 
in glibc pthreads 

● IBM’s JVM exploits POWER8’s HTM in JIT 

…

27



When to use TM?
● TM is likely to help… 

…if the application has many threads/resources with 
lightweight locking requirements (short critical sections) 
…if read-only transactions rarely access the same data as 
concurrent update transactions (few conflicts) 
…if the application uses coarse-grain locks and does not scale 
well (much serialization) 

● TM is unlikely to help… 
…if the application uses fine-grain locking and scales well 
(good parallelism) 
…if transactions access much data (long transactions) 
…if transactions conflict often (high contention)
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HTM performance (IBM)
Evaluation of Blue Gene/Q Hardware Support for Transactional Memories. Wang et al. [PACT 2012]

STAMP benchmarks
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HTM performance (Intel)
Exploiting Hardware Transactional Memory in Main-Memory Databases. Leis, Kemper, Neumann. [ICDE 2014]

Intel’s TSX for in-memory databases
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Summary
● Concurrent programming necessary to take 

advantage of multi-/many-cores 
● Complex to write correct and efficient code 

● HTM provides powerful tools to solve locking 
and synchronization problems 
● HLE is trivial to use, binary-compatible 
● RTM and other HTM APIs are flexible and powerful 

● Tools/libraries with HTM optimizations 

● Useful in combination with other paradigms 
● Cloud/clusters, MapReduce, ESP, MP, etc.
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TSX bug?
● HSW136. Software Using Intel® TSX May Result in 

Unpredictable System 
● Problem: Under a complex set of internal timing conditions and system 

events, software using the Intel TSX (Transactional Synchronization 
Extensions) instructions may result in unpredictable system behavior. 

● Implication: This erratum may result in unpredictable system behavior. 
● Workaround: It is possible for the BIOS to contain a workaround for this 

erratum. 

● HSW1. TSX instruction 
● Due to Erratum HSW136, TSX instructions are disabled and are only 

supported for software development. See your Intel representative for 
details.
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