
Prof. Christof Fetzer

(slides by Pascal Felber)

Exploiting support for
transactional memory
in modern multi-core

CPUs

FCDS

1

CPU scaling

Based on data from the CPU DB
[cpudb.stanford.edu]2

Power scaling

Based on data from the CPU DB
[cpudb.stanford.edu]3

Cache scaling

Based on data from the CPU DB
[cpudb.stanford.edu]4

Multi-/many-cores are here
● Multi-cores are the answer to increasing CPU

performance despite the “3 walls”
● Power wall: higher clock speeds require more power and

create thermal problems
● Memory wall: gap between CPU and memory speeds
● ILP wall: not enough instruction-level parallelism to keep

the CPU busy

● Single-thread performance does not improve
… but we can put more cores on a chip

● To take advantage of multi-cores we have to
develop concurrent code

5

Parallelism: a HW perspective
Based on slide by R. Rajwar (Intel)

Instructions Data Threads/cores

...
...

...

...

...

Sockets

Clusters

...

...

...

...

...

...

...

...

...

...

...

...

... ...

... ...

Cloud

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

6

Workloads and parallelism

● Data can be partitioned
→ data parallelism
● Split data, distribute to CPUs,

process in parallel

● Work split in phases
→ pipeline parallelism
● Each CPU responsible for some

phase(s)

● Access to shared data
→ task parallelism
● Critical sections for

synchronization
● Few conflicts ⇒ speculative/

optimistic parallelism

CPU

CPU

parti

partj

…

…
data

…

input parse process …

CPU CPU

…

CPUCPU

Lock-/obstruction-/wait-free?

7

Concurrent programming is hard
● Hard to make correct and efficient

● We need to exploit parallelism
● Need to identify and manage concurrency

● The human mind tends to be sequential

● Concurrent specifications
● Non-deterministic executions

● What about races? deadlocks? livelocks?
starvation? fairness?
● Need synchronization (correctness)…
… but not too much (performance)

8

Concurrency tradeoffs

lock

Coarse-grain locking

lock

lock

locklocklocklock

lock

Fine-grain locking
RMW

Lock-free

Development complexity

Pe
rf

or
m

an
ce

Concurrent development approaches differ in complexity and performance

Pa
ra

lle
lis

m

9

Why is that important?

Speedup= 1

1− p+ p
n

Amdahl’s law
Relationship between
the parallel part of a

program and the
speedup is not linear!

10

Speculative parallelism with TM
● Exploit parallelism across threads

● Goal: serialize execution only when necessary
● Approach: execute speculatively in parallel (optimistic

non-blocking execution)

● Transactional memory (TM)
● Critical sections execute in transactions (=units of work

that modify data and either commit, or abort/restart)
● Transactions run isolated from one another
● Writes are buffered, become visible upon commit
● The programmer only has to identify parallel regions

and enclose them within transactions
11

TM in a nutshell
● TM can simplify concurrent programming

● Sequence of instructions executed atomically
● BEGIN … READ / WRITE … COMMIT

● Optimistic CC: upon conflict, rollback & restart
● Alleviates problems of locks: both safe and scalable

● Simple API
● Language support (e.g.,

new keyword and
attributes in C++)

T2

T1
B W R→A W R W→A W R W C→A

B W CR

W R W C

B R CW B W CW B R CR

__transaction_atomic
{
 x = map.remove(key);
 set.add(x);
}

12

Research on TM
● Active field of research since 2003

● Algorithms for TM
● Hardware and hybrid designs
● Language constructs
● OS support, (RT) scheduling
● Runtime and libraries, GC
● TM for dependability
● Applications (e.g., game/application servers, DB)
● Contention management (liveness), theory
● Distributed TM, cloud/cluster deployments
…

http://research.cs.wisc.edu/trans-memory/biblio/index.html

13

A brief (partial) history of TM
ST

M
 (S

ha
vi

t,T
ou

ito
u)

Tr
an

sp
ar

en
t S

up
po

rt
 T

M
 (M

oi
r)

FS
TM

 (F
ra

se
r)

D
ST

M
 (H

er
lih

y
et

 a
l.)

W
ST

M
 &

 O
ST

M
 (F

ra
se

r,
H

ar
ris

)

A
ST

M
 (M

ar
at

he
, S

ch
er

er
, S

co
tt

)

Lo
ck

TM
 (E

nn
al

s)

M
cT

M
 (S

ah
a

et
 a

l.)

TL
 (D

ic
e,

 S
ha

vi
t)

SX
M

 (H
er

lih
y)

SI
-S

TM
 (R

ie
ge

l,
Fe

tz
er

, F
el

be
r)

LS
A

-S
TM

 (R
ie

ge
l,

Fe
tz

er
, F

el
be

r)

19
93

19
97

20
03

20
03

20
05

20
07

TL
2

(D
ic

e,
 S

ha
le

v,
 S

ha
vi

t)

Ti
ny

ST
M

 (F
el

be
r,

Fe
tz

er
, R

ie
ge

l)

20
03

20
05

20
06

20
06

20
06

20
06

20
06

20
06

Lock-
free

Obstruction-
free

Lock-
based

Time-
based

D
ST

M
2

(H
er

lih
y,

 L
uc

ha
ng

co
, M

oi
r)

20
06

RS
TM

 (M
ar

at
he

 e
t a

l.)
20

06

N
O

re
c

(D
al

es
sa

nd
ro

, S
pe

ar
, S

co
tt

)
20

10

→Distributed
→Hybrid

A
zu

l V
eg

a
Su

n
“R

oc
k”

IB
M

 G
en

e/
Q

, P
O

W
ER

8
In

te
l “

H
as

w
el

l”

Hardware

2008-
2014

14

Intel’s HTM (x86)
● Intel transactional synchronization extensions TSX

has 2 interfaces

1. Hardware Lock Elision (HLE)
● Lock-granularity optimizations: execute lock-protected

critical sections transactionally without acquiring lock
● Exploit hidden concurrency (automatic parallelization)
● Binary is backward compatible

2. Restricted Transactional Memory (RTM)
● More powerful/flexible for speculative execution
● Can also be used for HLE
● Requires checking CPU type in binary

15

HTM and HLE
● HTM can support hardware lock elision (HLE)

● Developer uses “coarse-grain” locking
● Easy to reason about and prove correct

● Hardware elides locks and provides “fine-
grain” locking performance
● Detects actual data conflicts, may abort and restart

lock

“Fine grain performance at coarse grain effort”

lock

lock

locklocklocklock

lockHLE

16

Speculative execution with HLE
Thread 1

acquire

release

Critical
section

Thread 2

acquire

release

Critical
section

With locks

CS

CS

• Serial
execution

• Lock
transfer
latencies

Without locks and conflicts

CS CS
• Concurrent

execution

• No lock
transfer
latencies

Data structure

lock

• Lock remains free
throughout
execution

• Upon conflict,
restart with lock

17

HLE
● Hint inserted in front of LOCK operation to

identify a region candidate for lock elision
● Prefixes XACQUIRE and XRELEASE
● Hints ignored by non-TSX processors

● Region executed speculatively in transaction
● Does not acquire lock (but watch for modifications)
● Tracks load, buffers stores, checkpoints registers
● Attempts to commit
● If HW cannot commit (e.g., conflict), restart and execute

non-speculatively by acquiring lock

18

HLE example
Based on slide by R. Rajwar (Intel)

acquire_lock(mutex);
/* critical section */
release_lock(mutex);

Application

 mov eax, 1
try: lock xchg mutex, eax
 cmp eax, 0
 jz success
spin: pause
 cmp mutex, 1
 jz spin
 jmp try

Acquire lock (library)

 mov mutex, 0
Release lock (library)

 mov eax, 1
try: xacquire lock xchg mutex, eax
 cmp eax, 0
 jz success
spin: pause
 cmp mutex, 1
 jz spin
 jmp try

Acquire lock with HLE (library)

HLE

 xrelease mov mutex, 0
Release lock with HLE (library)

HLE

Code example from Intel

19

RTM
● RTM introduces new instructions

● Demarcate critical sections with XBEGIN/XEND
● Speculative execution as HLE but no lock involved
● If transaction cannot commit atomically, abort and

execute handler specified by XBEGIN
● Abort information returned in EAX register
● Software can also explicitly abort with XABORT

● XTEST instruction can be used by SW to determine if in
active HLE or RTM region

20

RTM example
Based on slide by R. Rajwar (Intel)

acquire_lock(mutex);
/* critical section */
release_lock(mutex);

Application

retry: xbegin abort
 cmp mutex, 0
 jz success
 xabort $0xff
abort:
 ; check EAX, maybe first
 ; retry speculatively,
 ; otherwise acquire lock …

… mov eax, 1
try: lock xchg mutex, eax
 cmp eax, 0
 jz success
spin: pause
 cmp mutex, 1
 jz spin
 jmp try

Acquire lock with RTM (library)

 cmp mutex, 0
 jnz unlock
 xend …

…
unlock: mov mutex, 0

Release lock with RTM (library)

Code example from Intel

21

TSX implementation notes
● Write buffering using L1 cache (32KB)

● Writes visible to other threads only after commit
● Cache line granularity: eviction ⇒ abort, ⚠false sharing

● Cache size/associativity can be a limit

● Conflict detection for reads and writes
● L1 tracks addresses read/written in TSX region
● Conflicts detected using cache coherence protocol

● Transactional commit
● Transactional updates visible instantaneously

● Transactional abort discards all updates
22

HTM benefits

● Improve performance of
lock-based code
● Both coarse-grain and fine-

grain applications

● Simplify programming
● Lock-free algorithms hard to

make/prove correct!
● HTM provides lock-free

behavior for lock-based code
(if possible)
● Use locks for critical sections
● Let HW extract concurrency

Based on slide by R. Rajwar (Intel)

Fine-grain + HTM

Fine-grain

Threads

Sc
al

in
g

Ideal

Coarse-grain + HTM

Coarse-grain

SotA lock-free

Threads

Sc
al

in
g

Ideal

Lock-based + HTM

Graphs not based on real data

23

More benefits
● Lock-free programming:

● sometimes we would need a DCAS, etc

● RTM helps to implement such DCAS

●

Progress?

● Obstruction-free programming:
● difficult to achieve wait-free guarantees

● guarantee to make progress while no other
threads conflict

● thread backs-off if it sees contention (i.e.,
transaction aborts)

IBM’s HTM (POWER8)
● Similar API: tbegin, tend, tabort, tcheck

● Transactions can be suspended: tsuspend, tresume
● Inter-thread communication, stores that should not roll back, …

● Conflicts management at cache block granularity
● Transactions can be nested (flat nesting: inner

transactions aborts all enclosing ones)
● No guarantee of fairness/progress provided by HW

start: tbegin
 bne abort ; Aborted?

 ; execute transactionally

 tend
abort:
 b start ; Retry

POWER8 HTM

26

HTM in practice
● Intel TBB provides

● HLE-based speculative_spin_mutex
● RTM-based speculative_spin_rw_mutex

● Intel OpenMP features RTM-based lock elision

● Experimental HLE-based lock elision support
in glibc pthreads

● IBM’s JVM exploits POWER8’s HTM in JIT

…

27

When to use TM?
● TM is likely to help…

…if the application has many threads/resources with
lightweight locking requirements (short critical sections)
…if read-only transactions rarely access the same data as
concurrent update transactions (few conflicts)
…if the application uses coarse-grain locks and does not scale
well (much serialization)

● TM is unlikely to help…
…if the application uses fine-grain locking and scales well
(good parallelism)
…if transactions access much data (long transactions)
…if transactions conflict often (high contention)

28

HTM performance (IBM)
Evaluation of Blue Gene/Q Hardware Support for Transactional Memories. Wang et al. [PACT 2012]

STAMP benchmarks

29

HTM performance (Intel)
Exploiting Hardware Transactional Memory in Main-Memory Databases. Leis, Kemper, Neumann. [ICDE 2014]

Intel’s TSX for in-memory databases

30

Summary
● Concurrent programming necessary to take

advantage of multi-/many-cores
● Complex to write correct and efficient code

● HTM provides powerful tools to solve locking
and synchronization problems
● HLE is trivial to use, binary-compatible
● RTM and other HTM APIs are flexible and powerful

● Tools/libraries with HTM optimizations

● Useful in combination with other paradigms
● Cloud/clusters, MapReduce, ESP, MP, etc.

31

TSX bug?
● HSW136. Software Using Intel® TSX May Result in

Unpredictable System
● Problem: Under a complex set of internal timing conditions and system

events, software using the Intel TSX (Transactional Synchronization
Extensions) instructions may result in unpredictable system behavior.

● Implication: This erratum may result in unpredictable system behavior.
● Workaround: It is possible for the BIOS to contain a workaround for this

erratum.

● HSW1. TSX instruction
● Due to Erratum HSW136, TSX instructions are disabled and are only

supported for software development. See your Intel representative for
details.

32

