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Old days:  Symmetric Multiprocessing 
(SMP) 
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Multicore CPUs
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same chip
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Intel 2x18 cores 
(E5-2600v3, 2014) 

(c) Intel

ccNUMA =  
 cache coherent  
 Non Uniform Memory Architecture
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Interconnect
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● Bus (old days) 
● Like a tiny (old) Ethernet 
● Broadcast medium 
● Connects 

● Processors to memory 
● Processors to processors 

● Network 
● Like tiny LAN 
● State of the art in most systems
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Interconnect

● Interconnect is a finite resource 
● Processors can be delayed if others are consuming 

too much 
● Avoid algorithms that use too much bandwidth 
● Read/write memory
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CPU and Memory are Far Apart
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Processor

Memory

Interconnect
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Reading from Memory
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Address

Zzzz… Value
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Writing to Memory
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Address, value

Zzzz… Ack
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Remote Spinning

● Thread waits for a bit in memory to change 
● E.g., tries  to dequeue from an empty buffer, tries to 

acquire lock owned by another thread 
● Spins 
● Repeatedly rereads flag bit 

● Huge waste of interconnect bandwidth 
● Generates continuous traffic on bus

10



Foundation of Concurrent and Distributed Systems

Cache: Reading from Memory
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Address

Cache
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Cache Hit
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Address?

Cache
Yes!
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Cache Miss
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Cache

Address?

No!
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Local Spinning

● With caches, spinning becomes practical 
● First time 

● Load flag bit into cache 
● As long as it does not change 

● Hit in cache (no interconnect used) 
● When it changes 

● One-time cost 
● See cache coherence below
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Understanding Cache Behavior
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Data

…

++ ++ ++

Contention on interconnect



Foundation of Concurrent and Distributed Systems

Understanding Cache Behavior
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Understanding Cache Behavior

● Expected behavior 
● Data is not shared 

● Cores should read from 
and write to cache 

● No contention on 
interconnect 

● Throughput per thread 
should be constant if 
enough cores are available
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(c) Intel

Intel E5-2600v3, 2014
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Granularity and Locality

● Caches operate at a larger granularity than a 
word 

● Cache line: fixed-size block containing the 
address 
● E.g., 64 bytes on Intel i7 

● If you use an address now, you will probably use a 
nearby address soon 
● In the same cache line
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Understanding Cache Behavior

● Observed behavior 
● Variables are in the same 

cache line 

● Cache lines are shared 

● Modification of one 
variable invalidates full 
cache line 

● Every write invalidates 
caches of cores sharing 
same cache line
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False Sharing

● Two processors may conflict over disjoint 
addresses 
● If those addresses map on the same cache line 

● Large cache line size 
● Increases locality 
● But also increases likelihood of false sharing 

● Sometimes need to “scatter” data to avoid this 
problem
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L1 and L2 Caches
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L1

L2

Small & fast 

1 or 2 cycles 

~64 byte line

Larger and slower 

10s of cycles 

~64 byte line size
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Hit Ratio

● If you use an address now, you will probably use it 
again soon 
● Fetch from cache, not memory 

● Hit ratio: proportion of requests that hit in the 
cache 
● Measure of effectiveness of caching mechanism 
● Depends on locality of application
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When a Cache Becomes Full…

● Need to make room for new entry 
● By evicting an existing entry 
● Need a replacement policy 
● Usually some kind of least recently used heuristic
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Fully Associative Cache

● Any line can be anywhere in the cache 
● Advantage: can replace any line 
● Disadvantage: hard to find lines
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Direct Mapped Cache

● Every address has exactly 1 slot 
● Advantage: easy to find a line 
● Disadvantage: must replace fixed line
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K-way Set Associative Cache

● Each slot holds k lines 
● Advantage: pretty easy to find a line 
● Advantage: some choice in replacing line
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Cache Coherence

● Processor A and B both cache address x 
● A writes to x 
● Updates cache 

● How does B find out? 
● Many cache coherence protocols in literature
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MESI

● Modified 
● Have modified cached data, must write back to 

memory 
● Exclusive 
● Not modified, I have only copy 

● Shared 
● Not modified, may be cached elsewhere 

● Invalid 
● Cache contents not meaningful
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Processor Issues Load Request
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2nd Processor Loads Data
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Write Data: Write-Through Cache
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Write-Through Caches

● Immediately broadcast changes  
● Good 
● Memory, caches always agree 
● More read hits, maybe 

● Bad 
● Bus traffic on all writes 
● Most writes to unshared data 
● For example, loop indexes…
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Write-Back Caches

● Accumulate changes in cache 
● Invalidate other copies 

● Write back when line evicted 
● Need the cache for something else 
● Another processor wants it
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Write Data: Write-Back Cache
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SMP vs. NUMA

● SMP: symmetric multiprocessor 
● NUMA: non-uniform memory access 
● CC-NUMA: cache-coherent NUMA
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SMP NUMA

Memory



Caches

● There are not only L1 and L2 
● but also L3 (shared amongst cores) 
● sometimes L4 (e.g., DRAM chip on core) 

● Cores share L3 
● a core needs less L3, others get more 
● better usage of cache - faster applications
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Cache Monitoring & Allocation

● Modern CPUs contain up to 30MB (L1-L3 cache) 
● Run lots of applications concurrently 

● Problem: 
● cache hit rate has large impact on runtime 
● cache hit rate depends on cache usage of other 

applications

38



Architecture

● Servers have 1 - 4 sockets (- some even more)
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(C) Intel



Architecture

● Cores easier to partition 
● amongst applications 

● Difficult to partition: 
● Last level cache (L3) 
● Memory bandwidth
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Problem

● Problem: 
● Unpredictable performance 

● Example: 
● application runs great on my private machine 
● but runs badly on shared server  or cloud 
● when we have noisy neighbors
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Example

● Problem: 
● other application 

reduces cache hit rate 

● Approaches: 
● reserve cache for 

applications 
● migrate noisy 

neighbors to different 
socket
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Monitoring Cache Usage (CMT)
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Does this matter?

● Some apps 
are cache 
insensitive 

● Some are ok 
with limited 
cache 

● Some need 
as much 
cache as 
possible
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Cache Allocation

● Ensure that an application (or VM) 
● has sufficient cache space 

● Approach: 
● reserve cache entries for given class of VMs/

applications/threads 
● entity does not compete with applications in 

another class
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Memory Bandwidth Monitoring

● Memory can easily partitioned between 
applications (by the OS / VMM) 

● Problem: 
● limited memory bandwidth can limit application 

performance 
● Approach: 
● Monitor app memory bandwidth usage 
● Migrate noisy apps to different socket  
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Summary

● Hardware is more complex than our ideal model 
● Weaken consistency for performance 
● Sharing of resources 

● Cache influences performance 
● noisy neighbors can reduce performance 

● Memory bandwidth influences performance 
● noisy neighbors can reduce performance
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