
Caching

Christof Fetzer, TU Dresden

Based on slides by Maurice Herlihy
and Nir Shavit

8© 2009 Herlihy and Shavit

Old days: Symmetric Multiprocessing
(SMP)

cache

BusBus

shared memory

cachecache

10© 2009 Herlihy and Shavit

Multicore CPUs

cache

BusBus

shared cache

cachecacheAll on the
same chip

11

Intel 2x18 cores
(E5-2600v3, 2014)

(c) Intel

ccNUMA =
 cache coherent
 Non Uniform Memory Architecture

Foundation of Concurrent and Distributed Systems

Interconnect

5

● Bus (old days)
● Like a tiny (old) Ethernet
● Broadcast medium
● Connects

● Processors to memory
● Processors to processors

● Network
● Like tiny LAN
● State of the art in most systems

Foundation of Concurrent and Distributed Systems

Interconnect

● Interconnect is a finite resource
● Processors can be delayed if others are consuming

too much
● Avoid algorithms that use too much bandwidth
● Read/write memory

6

Foundation of Concurrent and Distributed Systems

CPU and Memory are Far Apart

7

Processor

Memory

Interconnect

Foundation of Concurrent and Distributed Systems

Reading from Memory

8

Address

Zzzz… Value

Foundation of Concurrent and Distributed Systems

Writing to Memory

9

Address, value

Zzzz… Ack

Foundation of Concurrent and Distributed Systems

Remote Spinning

● Thread waits for a bit in memory to change
● E.g., tries to dequeue from an empty buffer, tries to

acquire lock owned by another thread
● Spins
● Repeatedly rereads flag bit

● Huge waste of interconnect bandwidth
● Generates continuous traffic on bus

10

Foundation of Concurrent and Distributed Systems

Cache: Reading from Memory

11

Address

Cache

Foundation of Concurrent and Distributed Systems

Cache Hit

12

Address?

Cache
Yes!

Foundation of Concurrent and Distributed Systems

Cache Miss

13

Cache

Address?

No!

Foundation of Concurrent and Distributed Systems

Local Spinning

● With caches, spinning becomes practical
● First time

● Load flag bit into cache
● As long as it does not change

● Hit in cache (no interconnect used)
● When it changes

● One-time cost
● See cache coherence below

14

Data

++

Foundation of Concurrent and Distributed Systems

Understanding Cache Behavior

15

Data

…

++ ++ ++

Contention on interconnect

Foundation of Concurrent and Distributed Systems

Understanding Cache Behavior

16

Data

…

Data Data…

++ ++ ++

Foundation of Concurrent and Distributed Systems

Understanding Cache Behavior

● Expected behavior
● Data is not shared

● Cores should read from
and write to cache

● No contention on
interconnect

● Throughput per thread
should be constant if
enough cores are available

17

Data

…

Data Data…
++ ++ ++

Nb. cores

O
ps

 p
er

 c
or

e

11

(c) Intel

Intel E5-2600v3, 2014

Foundation of Concurrent and Distributed Systems

Granularity and Locality

● Caches operate at a larger granularity than a
word

● Cache line: fixed-size block containing the
address
● E.g., 64 bytes on Intel i7

● If you use an address now, you will probably use a
nearby address soon
● In the same cache line

19

Foundation of Concurrent and Distributed Systems

Understanding Cache Behavior

● Observed behavior
● Variables are in the same

cache line

● Cache lines are shared

● Modification of one
variable invalidates full
cache line

● Every write invalidates
caches of cores sharing
same cache line

20

Data Data

++ ++

Nb. cores

O
ps

 p
er

 c
or

e

Foundation of Concurrent and Distributed Systems

False Sharing

● Two processors may conflict over disjoint
addresses
● If those addresses map on the same cache line

● Large cache line size
● Increases locality
● But also increases likelihood of false sharing

● Sometimes need to “scatter” data to avoid this
problem

21

Foundation of Concurrent and Distributed Systems

L1 and L2 Caches

22

L1

L2

Small & fast

1 or 2 cycles

~64 byte line

Larger and slower

10s of cycles

~64 byte line size

Foundation of Concurrent and Distributed Systems

Hit Ratio

● If you use an address now, you will probably use it
again soon
● Fetch from cache, not memory

● Hit ratio: proportion of requests that hit in the
cache
● Measure of effectiveness of caching mechanism
● Depends on locality of application

23

Foundation of Concurrent and Distributed Systems

When a Cache Becomes Full…

● Need to make room for new entry
● By evicting an existing entry
● Need a replacement policy
● Usually some kind of least recently used heuristic

24

Foundation of Concurrent and Distributed Systems

Fully Associative Cache

● Any line can be anywhere in the cache
● Advantage: can replace any line
● Disadvantage: hard to find lines

25

Foundation of Concurrent and Distributed Systems

Direct Mapped Cache

● Every address has exactly 1 slot
● Advantage: easy to find a line
● Disadvantage: must replace fixed line

26

Foundation of Concurrent and Distributed Systems

K-way Set Associative Cache

● Each slot holds k lines
● Advantage: pretty easy to find a line
● Advantage: some choice in replacing line

27

Foundation of Concurrent and Distributed Systems

Cache Coherence

● Processor A and B both cache address x
● A writes to x
● Updates cache

● How does B find out?
● Many cache coherence protocols in literature

28

Foundation of Concurrent and Distributed Systems

MESI

● Modified
● Have modified cached data, must write back to

memory
● Exclusive
● Not modified, I have only copy

● Shared
● Not modified, may be cached elsewhere

● Invalid
● Cache contents not meaningful

29

Foundation of Concurrent and Distributed Systems

Processor Issues Load Request

30

Load x

Bus

Cache

Memory

Cache Cache

Bus

Got it

Bus

Data

E

Foundation of Concurrent and Distributed Systems

2nd Processor Loads Data

31

Got it

Bus

Cache

Memory

Cache Cache

Load x

Bus

Data

E Data

Bus

Data SS

Foundation of Concurrent and Distributed Systems

Write Data: Write-Through Cache

32

Bus

Cache

Memory

Data Cache

Write x

Bus

Data

E Data SS DataDataData

Foundation of Concurrent and Distributed Systems

Write-Through Caches

● Immediately broadcast changes
● Good
● Memory, caches always agree
● More read hits, maybe

● Bad
● Bus traffic on all writes
● Most writes to unshared data
● For example, loop indexes…

33

(1)

Foundation of Concurrent and Distributed Systems

Write-Back Caches

● Accumulate changes in cache
● Invalidate other copies

● Write back when line evicted
● Need the cache for something else
● Another processor wants it

34

Foundation of Concurrent and Distributed Systems

Write Data: Write-Back Cache

35

Bus

Cache

Memory

Data Cache

Write x

Bus

Data

E Data SS Data

Invalidate x

MI

Foundation of Concurrent and Distributed Systems

SMP vs. NUMA

● SMP: symmetric multiprocessor
● NUMA: non-uniform memory access
● CC-NUMA: cache-coherent NUMA

36

SMP NUMA

Memory

Caches

● There are not only L1 and L2
● but also L3 (shared amongst cores)
● sometimes L4 (e.g., DRAM chip on core)

● Cores share L3
● a core needs less L3, others get more
● better usage of cache - faster applications

37

Cache Monitoring & Allocation

● Modern CPUs contain up to 30MB (L1-L3 cache)
● Run lots of applications concurrently

● Problem:
● cache hit rate has large impact on runtime
● cache hit rate depends on cache usage of other

applications

38

Architecture

● Servers have 1 - 4 sockets (- some even more)

39
(C) Intel

Architecture

● Cores easier to partition
● amongst applications

● Difficult to partition:
● Last level cache (L3)
● Memory bandwidth

40

Problem

● Problem:
● Unpredictable performance

● Example:
● application runs great on my private machine
● but runs badly on shared server or cloud
● when we have noisy neighbors

41

Example

● Problem:
● other application

reduces cache hit rate

● Approaches:
● reserve cache for

applications
● migrate noisy

neighbors to different
socket

42

(C) Intel

Monitoring Cache Usage (CMT)

43

Does this matter?

● Some apps
are cache
insensitive

● Some are ok
with limited
cache

● Some need
as much
cache as
possible

44

Cache Allocation

● Ensure that an application (or VM)
● has sufficient cache space

● Approach:
● reserve cache entries for given class of VMs/

applications/threads
● entity does not compete with applications in

another class

45

Memory Bandwidth Monitoring

● Memory can easily partitioned between
applications (by the OS / VMM)

● Problem:
● limited memory bandwidth can limit application

performance
● Approach:
● Monitor app memory bandwidth usage
● Migrate noisy apps to different socket

46

Foundation of Concurrent and Distributed Systems

Summary

● Hardware is more complex than our ideal model
● Weaken consistency for performance
● Sharing of resources

● Cache influences performance
● noisy neighbors can reduce performance

● Memory bandwidth influences performance
● noisy neighbors can reduce performance

47

