Shared Counters and
Parallelism

Christof Fetzer, TU Dresden

Based on slides by Maurice Herlihy
and Nir Shavit




A Shared Pool

public interface Pool {
public void put(Object x);
public Object remove();

Y
Unordered set of objects
e Put e Remove
- Inserts object - Removes & returns an
object

- blocks if full
- blocks if empty

Art of Multiprocessor Programming 2



Simple Locking Implementation

i o

| Art of Multiprocessor Programming 3

O
o




Simple Locking Implementation

—

Problem: hot-
spot contention

| Art of Multiprocessor Programming 4




Simple Locking Implementation

—

spot contention

—
Problem: need to

Problem: hot-

count the number
of elements in pool jJ—




Simple Locking Implementation

7~
Solution:

Queue Lock

Problem: can we

count in parallel?
7 6




Simple Locking Implementation

—

Solution:
Queue Lock

Problem: hot-
spot contention

/ Problem:

sequential
bottleneck  J—

Solution?
27

J




Counting Implementation

Art of Multiprocessor Programming 8



Counting Implementation

Only the counters
are sequential

N—

Art of Multiprocessor Programming 9



Shared Counter

Art of Multiprocessor Programming

10



Shared Counter

No duplication j

0

Art of Multiprocessor Programming

11



Shared Counter

2: No duplication j
I I

Art of Multiprocessor Programming

12



Shared Counter

2: No duplication j
I |

Not necessarily
linearizable

7

13



Shared Counters

e Can we build a shared counter with
- Low memory contention, and
- Real parallelism?
e Locking
- Can use queue locks to reduce contention
- No help with parallelism issue ...

Art of Multiprocessor Programming 14



Software Combining Tree

Contention:
All spinning local < :@

()
L ]
|
n
| |
u
n
« .
-
. o
“ .
. D

e( D

; n

u

.

. * .
* ’Q .
* . ¢
. ¢ ¢
* ¢ e
LN *

.0
*
.0
*

R
*
.0 *
[ 4
S <

B8 <«

Parallelism:
Potential n/log n
speedup

*
*
L4
*
*
*
*
*
*

*
*
*
*
*
*
.
. c ,
- «
] C
‘0
*
o*
.

Art of Multiprocessor Programming 15



Combining Trees

Art of Multiprocessor Programming 16



Combining Trees

Art of Multiprocessor Programming 17



Combining Trees

Art of Multiprocessor Programming 18



Combining Trees

\:
+_[ A ’_l_j\TWO threads meet,

combine sums

Sl L

Art of Multiprocessor Programming




Combining Trees

Two threads meet,
combine sums

Sl @ P

Art of Multiprocessor Programming




Combining Trees

ombined sum added
to root

Art of Multiprocessor Programming 21



Combining Trees

Result returned
to children

Art of Multiprocessor Programming 22



Combining Trees
Czo
) Results returned to
threads

Art of Multiprocessor Programming



Devil in the Details

e What if
- threads don’t arrive at the same time?

e Wait for a partner to show up?
- How long to wait?
- Waiting times add up ...

e Instead
- Use multi-phase algorithm
- Try to wait in parallel ...

24



Software Combining Tree

1.Phase: .
Precombine @

‘0
‘0
*

.
. e
* 3
* .
* 3
* .
* .
¢ S

o .

.

Art of Multiprocessor Programming 25



Software Combining Tree

1.Phase: ¢
Precombine @,

‘0
*
‘0
*
*
*
‘0
*

0..
QQQQ
*
‘Q

L 4 . .
0 . [N
Ry . *s
.
o ° . *
& . L4 .
FIRST y :
L .
n a
- | |
.
’Q . v
. . -
e - ®
. *e *

Art of Multiprocessor Programming 25



Software Combining Tree

1.Phase: ¢
Precombine @,

‘0
*
‘0
*
*
*
‘0
*

’O
“
*

. .
. (3
. ¢‘
“ .
o . ,’ “
FIRST y :
D .
n a
n | |
.
. . -
* [ *
L 4 * ‘Q
® * .
* .

Art of Multiprocessor Programming 25



Software Combining Tree

1.Phase: ¢
Precombine <P |3 stoe

’0
*
‘0
*

’O
“
*

. .
. (3
. ¢‘
“ .
o . ,’ “
FIRST y :
D .
n a
n | |
.
. . -
* [ *
L 4 * ‘Q
® * .
* .

Art of Multiprocessor Programming 25



Software Combining Tree

1.Phase: ¢
Precombine <P |3 stoe

’0
*
‘0
*

’O
“
*

BT (@) @ st (T T

Art of Multiprocessor Programming 25



Software Combining Tree

1.Phase: ¢
Precombine > [ stor

‘0
‘Q
*
"‘
*

’O
“
*

SECOND EMRSF 6 :
@) seor T

BT (@) @ st (T T

Art of Multiprocessor Programming 25



Phases

e Precombining

- Set up combining rendezvous
« Combining

- Collect and combine operations
e Operation

- Hand off to higher thread

e Distribution
- Distribute results to waiting threads



Software Combining Tree

2.Phase: ¢
Combine @,

‘0
*
‘0
*
*
*
‘0
*

0..
QQQQ
*
‘Q

Art of Multiprocessor Programming 27



Software Combining Tree

2.Phase: ¢
Combine @,

‘0
*
‘0
*
*
*
‘0
*

0..
QQQQ
*
‘Q

Art of Multiprocessor Programming 27



Software Combining Tree

2.Phase: ¢
Combine @,

‘0
*
‘0
*
*
*
‘0
*

’O
“
*

Art of Multiprocessor Programming 27



Software Combining Tree

2.Phase: ¢
Combine @,

‘0
*
‘0
*
*
*
‘0
*

’O
“
*

Art of Multiprocessor Programming 27



Software Combining Tree

2.Phase: ¢
Combine @,

‘0
*
‘0
*
*
*
‘0
*

’O
“
*

Art of Multiprocessor Programming 27



Software Combining Tree

2.Phase: ¢
Combine 2@ M@

’0
*
‘0
*

’O
“
*

Art of Multiprocessor Programming 27



Software Combining Tree

3.Phase: ¢
. ion: +2
Operatlon 2@ GE] operation

’0
*
‘0
*

’O
“
*

Art of Multiprocessor Programming 28



Software Combining Tree

3.Phase: ¢
. ion: +2
Operatlon 2@ GE] operation

’0
*
‘0
*

’O
“
*

Art of Multiprocessor Programming 28



Software Coabim’ng Tree

v
GE] operation: +2

*

4.Phase:
Distribution

‘0
‘0
*

¢ .
.
- *
* 3
* 3
* .
* .
“““
*

*
* .
3
D
R *
a - .
. . *,
v . *

Art of Multiprocessor Programming 29



Software Coabim’ng Tree

4.Phase: 4 -~ o
Distribution @133 .

o e
* 3
* 3
* 3
* .
o 0‘
o .
K3

Art of Multiprocessor Programming 29



Software Coabim’ng Tree

4.Phase: R
. . ' ion: +2
Distribution ~ * >z 3 operation

’O
*
‘0
*

0..
""""
*
R

Art of Multiprocessor Programming 29



Software Cogbim’ng Tree

4.Phase: R
. . ' ion: +2
Distribution ~ * >z 3 operation

’0
*
‘0
*

0..
""""
*
o*

Art of Multiprocessor Programming 29



Software Cogbim’ng Tree

4.Phase: R
. . ' ion: +2
Distribution ~ * >z 3 operation

’0
*
‘0
*

0..
""""
*
o*

Art of Multiprocessor Programming 29



Software Combining Tree
6
4.Phase: R |
Distribution 4@ “““ @ e

’0
*
‘0
*

’O
“
*

Art of Multiprocessor Programming 29



Combining Status

enum CStatus{
IDLE, FIRST, SECOND, DONE, ROOT};

Art of Multiprocessor Programming 30



Combining Status

IDLE,

Nothing going on

Art of Multiprocessor Programming

31



Combining Status

FIRST,

1st thread is partner for combining,
will return soon to check for 2nd
thread



Combining Status

ECOND,

2nd thread arrived with
value for combining

Art of Multiprocessor Programming

33



Combining Status

DONE,

1st thread has completed
operation & deposited result for
2nd thread



Combining Status

[ROOT)

|

Special case: root node

Art of Multiprocessor Programming 35



Node Synchronization

e Short-term
- Synchronized methods
- Consistency during method call

e Long-term
- Boolean locked field
- Consistency across calls

Art of Multiprocessor Programming

36



Precombining Phase

N

B P

N\
Art of Multiprocessor Programming 37



Precombining Phase

Co D

// N\
If IDLE, promise to
[ return to look for
partner

Sl L

Art of Multiprocessor Programming



Precombining Phase
At ROOT, turn

37 back

N

Sl L

Art of Multiprocessor Programming




Precombining Phase

Art of Multiprocessor Programming 40



Precombining Phase

7 N\
P .

,A

& P

Art of Multiprocessor Programming 41



Code

e Tree class
- In charge of navigation

e Node class
- Combining state
- Synchronization state
- Bookkeeping

Art of Multiprocessor Programming

42



Precombining Navigation

Node node = myLeatf;
while (node.precombine()) {
node = node.parent;

}

Node stop = node;

Art of Multiprocessor Programming 43



Precombining Navigation
[Node node = myLeaf;

Start at leaf

Art of Multiprocessor Programming 44



Precombining Navigation

while (node.precombine()) { O
node = node.parent;

) _

Move up while instructed
to do so

Art of Multiprocessor Programming 45



Precombining Navigation

E\Iode stop = node;w\l

Remember where we
stopped

Art of Multiprocessor Programming 46



Precombining Node

synchronized boolean precombine() {
while (locked) wait();
switch (cStatus) {
case IDLE: cStatus = CStatus.FIRST;
return true;
case FIRST: locked = true;
cStatus = CStatus.SECOND;
return false;
case ROOT: return false;
default: throw new PanicException()

}
}

Art of Multiprocessor Programming

47



Precombining Node

E/nchronized

Short-term
synchronization

Art of multuiprocessor Programming 48



Synchronization

Ewhile (locked) wait();

Wait while node is locked

Art of multuiprocessor Programming 49



Precombining Node

Evitch (cStatus) {

Check combining status

Art of Multiprocessor Programming 50



Node was IDLE

E\SG IDLE: cStatus = CStatus.FIRST;

| will return to look for
combining value

Art OT MULLIprocessor PFrogramming

51



Precombining Node

[ return true;\ﬁ

Continue up the tree

Art of Multiprocessor Programming

52



I’m the 2nd Thread

[case FIRST: locked = true;

If 1st thread has promised to return, lock
node so it won’t leave without me

Art OT MULLIProcessor PFrogramming 53



Precombining Node

EStatus = CStatus.SECOND:;

Prepare to deposit 2nd
value

Art of Multiprocessor Programming 54



Precombining Node

End of phase 1, don’t
continue up tree

return false; j

Art of Multiprocessor Programming

55



Node is the Root

If root, phase 1 ends,
don’t continue up tree

case ROQT: return false; j

Art of Multiprocessor Programming

56



Precombining Node

Always check for
unexpected values!

Ejefault: throw new PanicException() j

Art of Multiprocessor Programming

57



Combining Phase

Co D

7 N
, .

- 1st thread locked out
.ﬂ ! until 2nd provides
3 value

Art of Multiprocessor Programming




Combining Phase

Co D

7 N
Y

2nd thread deposits value
" ! to be combined, unlocks
+ . node, & waits ...

@ P

Art of Multiprocessor Programming 59




Combining Phase

1st thread moves up the
tree with combined
value ...

Art of Multiprocessor Programming 60



Combining (reloaded)

Art of Multiprocessor Programming 61



Combining (reloaded)

¢

’ 1st thread is alone,

"\/, locks out late
partner

Art of Multiprocessor Programming




Combining (reloaded)

Art of Multiprocessor Programming 63



Combining (reloaded)

2nd thread’s phase 1
visit locked out

Sl L

Art of Multiprocessor Programming




Combining Navigation

node = myLeaf;

int combined = 1;

while (node != stop) {
combined = node.combine(combined);
stack.push(node);
node = node.parent;

}

Art of Multiprocessor Programming

65



Combining Navigation

Eode = myLeaf;

Start at leaf

Art of Multiprocessor Programming

66



Combining Navigation

Et combined = 1;

Add 1

Art of Multiprocessor Programming

67



Combining Navigation

E/vhile (node != stop) {

Revisit nodes visited
in phase 1

Art of Multiprocessor Programming 68



Combining Navigation

Ecombined = node.combine(combined); j

Accumulate combined
values, if any

Art of Multiprocessor Programming 69



Combining Navigation

We will retraverse path in

reverse order ...
Etack.push(nod%

Art of Multiprocessor Programming 70



Combining Navigation

@de = node.p%
Y

Art of Multiprocessor Programming 71

Move up the tree




Combining Phase Node

synchronized int combine(int combined) {
while (locked) wait();
locked = true;
firstValue = combined;
switch (cStatus) {
case FIRST:
return firstValue;
case SECOND:
return firstValue + secondValue;
default: ...

}
}

Art of Multiprocessor Programming

72



Combining Phase Node

Ewhile (locked) wait():

Wait until node is unlocked

Art of Multiprocessor Programming 73



Combining Phase Node

Eocked = true;
Lock out late attempts

to combine

Art of Multiprocessor Programming 74



Combining Phase Node

EfirstVaIue = combined:

Remember our contribution

Art of Multiprocessor Programming 75



Combining Phase Node

Eswitch (cStat{

Check status

Art of Multiprocessor Programming

76



Combining Phase Node

1st thread is alone

case FIRST:
return firstValue;

Art of Multiprocessor Programming 77




Combining Node

Combine with

2nd thread

L

case SECOND:
return firstValue + secondValue;

Art of Multiprocessor Programming

78



Operation Phase

Add comBined value to root,
start back down (phase 4)

Art of Multiprocessor Programming 79



Operation Phase (reloaded)

Art of Multiprocessor Programming 80



Operation Phase (reloaded)

7 N\
, .

RSN

Art of Multiprocessor Programming 81




Operation Phase Navigation

prior = stop.op(combined);

Art of Multiprocessor Programming 82



Operation Phase Navigation
prior = stop.op(combined); j

Get result of
combining

Art of Multiprocessor Programming 83



Operation Phase Node

synchronized int op(int combined) {
switch (cStatus) {
case ROQT: int oldValue = result;
result += combined,;
return oldValue;
case SECOND: secondValue = combined;
locked = false; notifyAll();
while (cStatus = CStatus.DONE) wait();
locked = false; notifyAll();
cStatus = CStatus.IDLE;
return result;
default: ...

Art of Multiprocessor Programming

84



At Root

case ROOT: int oldValue = result;
result += combined;
return oldValue;

Add sum to root,
return prior value

Art of Multiprocessor Programming 85



Intermediate Node

Ease SECOND: secondValue = combined: j

Deposit value for later
combining ...

Art of Multiprocessor Programming 86



Intermediate Node

Eocked = false; notifyAII();Nj

Unlock node, notify
1st thread

Art of Multiprocessor Programming 87



Intermediate Node

Wait for 1st thread
to deliver results

VAN

[ while (cStatus != CStatus.DONE) wait() ]

Art of Multiprocessor Programming 88



Intermediate Node

Unlock node &
return

locked = false; notifyAll();
cStatus = CStatus.IDLE;
return result;

Art of Multiprocessor Programming 89



Distribution Phase

& @% =

Art of Multiprocessor Programming



Distribution Phase

7/
A/
rg
a
|

@

Art of Multiprocessor Programming 91



Distribution Phase

Art of Multiprocessor Programming 92



Distribution Phase

Art of Multiprocessor Programming 93



Distribution Phase Navigation

while (Istack.empty()) {
node = stack.pop();
node.distribute(prior);

}

return prior;

Art of Multiprocessor Programming 94



Distribution Phase Navigation
Ifﬂle (Istack.empty()) {

node = stack.pop();

Traverse path in
reverse order

Art of Multiprocessor Programming 95



Distribution Phase Navigation

Ewode.distribute(prior); |

Distribute results to
waiting 2nd threads

Art of Multiprocessor Programming 96



Distribution Phase Navigation

Ereturn prior;

Return result
to caller

Art of Multiprocessor Programming 97



Distribution Phase

synchronized void distribute(int prior) {
switch (cStatus) {

case FIRST:
cStatus = CStatus.IDLE;
locked = false; notifyAll();
return;

case SECOND:
result = prior + firstValue;
cStatus = CStatus.DONE; notifyAll();
return;

default: ...

Art of Multiprocessor Programming

98



Distribution Phase

case FIRST: )

cStatus = CStatus.IDLE;
locked = false; notifyAll();

\return;

No combining, unlock
node & reset

Art of Multiprocessor Programming 99



Distribution Phase

Notify 2nd thread that
result is available

" case SECOND:

result = prior + firstValue;
cStatus = CStatus.DONE; notifyAll();

\_return;

/\

Art of Multiprocessor Programming 100



Bad News: High Latency

Log n

Art of Multiprocessor Programming 101



Good News: Real Parallelism

1 thread

+2 T 43
|| i 2 threads

Art of Multiprocessor Programming 102




Throughput Puzzles

e Ideal circumstances
- All n threads move together, combine
- n increments in O(log n) time

e Worst circumstances
- All n threads slightly skewed, locked out
- n increments in O(n - log n) time

Art of Multiprocessor Programming 103



Index Distribution Benchmark

void indexBench(int iters, int work) {
while (int i < iters) {
| = r.getAndIncrement();
Thread.sleep(random() % work);

1}

Art of Multiprocessor Programming 104



Index Distribution Benchmark

int iters, 1)

How many iterations

Art of Multiprocessor Programming 105



Index Distribution Benchmark

Int work j

Expected time between
incrementing counter

Art of Multiprocessor Programming 106



Index Distribution Benchmark

I = r.getAndIncrement(); ]

Take a number

Art of Multiprocessor Programming 107



Index Distribution Benchmark

l:'l"h—reaa -Sleep(random() % V wor‘K)_\J;

P

Pretend to work
(more work, less concurrency)

Art of Multiprocessor Programming 108



Performance Benchmarks

o Alewife e Throughput:
_ NUMA architecture - average number of inc
- Simulated operations
in 1 million cycle
period.
MIT - ALEWIFE

e Latency:

- average number of
simulator cycles
per inc operation.

Art of Multiprocessor Programming 109



Performance

cycles operations
per per million
operation Latency: cycles Throughput:
90000 90000
80000 [ E
80000 | J
Splock 70000 | .
60000 | ® 2 60000 F E
50000 F 4
50000 |
40000 f
30000 ¢t E 30000
20000 { 4 20000 T Sy ’ ]
10000 | _sea .
0 1 1 1 1 1 A. — ‘u * 1 1 |‘SpI00k
0 50 100 150 200 250 300 0 0 50 100 150 200 250 300
num of processors num of processors
work =0

Art of Multiprocessor Programming 110



The Combining Paradigm

e Implements any RMW operation

« When tree is loaded
- Takes 2 log n steps
- for n requests

e Very sensitive to load fluctuations:
- if the arrival rates drop
- the combining rates drop
- overall performance deteriorates!

111



Combining Load Sensitivity

Throughput

Notice Load Fluctuations

processors

Art of Multiprocessor Programming 112



Combining Rate vs Work

Throughput
70,0
/ = W=5000
~ W=100
35,0

17,5

0,0 -

1 2 4 8 16 31 48 64 processors

Art of Multiprocessor Programming 113



Conclusions

e Combining Trees
- Work well under high contention
- Sensitive to load fluctuations
- Can be used for getAndMumble() ops

Art of Multiprocessor Programming 114



