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A Shared Pool

public interface Pool {
public void put(Object x);
public Object remove();

Y
Unordered set of objects
e Put e Remove
- Inserts object - Removes & returns an
object

- blocks if full
- blocks if empty
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Simple Locking Implementation
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Simple Locking Implementation

—

Problem: hot-
spot contention
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Simple Locking Implementation

—

spot contention

—
Problem: need to

Problem: hot-

count the number
of elements in pool jJ—




Simple Locking Implementation

7~
Solution:

Queue Lock

Problem: can we

count in parallel?
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Simple Locking Implementation

—

Solution:
Queue Lock

Problem: hot-
spot contention

/ Problem:

sequential
bottleneck  J—

Solution?
27
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Counting Implementation

Art of Multiprocessor Programming 8



Counting Implementation

Only the counters
are sequential

N—
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Shared Counter
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Shared Counter

No duplication j

0
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Shared Counter

2: No duplication j
I I
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Shared Counter

2: No duplication j
I |

Not necessarily
linearizable

7
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Shared Counters

e Can we build a shared counter with
- Low memory contention, and
- Real parallelism?
e Locking
- Can use queue locks to reduce contention
- No help with parallelism issue ...
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Software Combining Tree
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Combining Trees
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Combining Trees
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Combining Trees
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Combining Trees

\:
+_[ A ’_l_j\TWO threads meet,

combine sums

Sl L
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Combining Trees

Two threads meet,
combine sums

Sl @ P
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Combining Trees

ombined sum added
to root
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Combining Trees

Result returned
to children

Art of Multiprocessor Programming 22



Combining Trees
Czo
) Results returned to
threads
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Devil in the Details

e What if
- threads don’t arrive at the same time?

e Wait for a partner to show up?
- How long to wait?
- Waiting times add up ...

e Instead
- Use multi-phase algorithm
- Try to wait in parallel ...
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Software Combining Tree
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Software Combining Tree
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Software Combining Tree
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Software Combining Tree
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Software Combining Tree
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Software Combining Tree
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Phases

e Precombining

- Set up combining rendezvous
« Combining

- Collect and combine operations
e Operation

- Hand off to higher thread

e Distribution
- Distribute results to waiting threads



Software Combining Tree
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Software Combining Tree
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Software Combining Tree
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Software Combining Tree
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Software Combining Tree
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Software Combining Tree
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Software Combining Tree

3.Phase: ¢
. ion: +2
Operatlon 2@ GE] operation

’0
*
‘0
*

’O
“
*

Art of Multiprocessor Programming 28



Software Combining Tree
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Software Coabim’ng Tree

v
GE] operation: +2

*

4.Phase:
Distribution

‘0
‘0
*

¢ .
.
- *
* 3
* 3
* .
* .
“““
*

*
* .
3
D
R *
a - .
. . *,
v . *

Art of Multiprocessor Programming 29



Software Coabim’ng Tree
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Software Coabim’ng Tree
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Software Cogbim’ng Tree
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Software Cogbim’ng Tree
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Combining Status

enum CStatus{
IDLE, FIRST, SECOND, DONE, ROOT};
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Combining Status

IDLE,

Nothing going on

Art of Multiprocessor Programming
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Combining Status

FIRST,

1st thread is partner for combining,
will return soon to check for 2nd
thread



Combining Status

ECOND,

2nd thread arrived with
value for combining

Art of Multiprocessor Programming
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Combining Status

DONE,

1st thread has completed
operation & deposited result for
2nd thread



Combining Status

[ROOT)

|

Special case: root node
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Node Synchronization

e Short-term
- Synchronized methods
- Consistency during method call

e Long-term
- Boolean locked field
- Consistency across calls

Art of Multiprocessor Programming
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Precombining Phase

N

B P

N\
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Precombining Phase

Co D

// N\
If IDLE, promise to
[ return to look for
partner

Sl L
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Precombining Phase
At ROOT, turn

37 back

N

Sl L
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Precombining Phase
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Precombining Phase

7 N\
P .

,A

& P
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Code

e Tree class
- In charge of navigation

e Node class
- Combining state
- Synchronization state
- Bookkeeping

Art of Multiprocessor Programming
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Precombining Navigation

Node node = myLeatf;
while (node.precombine()) {
node = node.parent;

}

Node stop = node;
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Precombining Navigation
[Node node = myLeaf;

Start at leaf
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Precombining Navigation

while (node.precombine()) { O
node = node.parent;

) _

Move up while instructed
to do so
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Precombining Navigation

E\Iode stop = node;w\l

Remember where we
stopped
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Precombining Node

synchronized boolean precombine() {
while (locked) wait();
switch (cStatus) {
case IDLE: cStatus = CStatus.FIRST;
return true;
case FIRST: locked = true;
cStatus = CStatus.SECOND;
return false;
case ROOT: return false;
default: throw new PanicException()

}
}

Art of Multiprocessor Programming
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Precombining Node

E/nchronized

Short-term
synchronization
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Synchronization

Ewhile (locked) wait();

Wait while node is locked
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Precombining Node

Evitch (cStatus) {

Check combining status
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Node was IDLE

E\SG IDLE: cStatus = CStatus.FIRST;

| will return to look for
combining value

Art OT MULLIprocessor PFrogramming
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Precombining Node

[ return true;\ﬁ

Continue up the tree

Art of Multiprocessor Programming
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I’m the 2nd Thread

[case FIRST: locked = true;

If 1st thread has promised to return, lock
node so it won’t leave without me
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Precombining Node

EStatus = CStatus.SECOND:;

Prepare to deposit 2nd
value
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Precombining Node

End of phase 1, don’t
continue up tree

return false; j

Art of Multiprocessor Programming
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Node is the Root

If root, phase 1 ends,
don’t continue up tree

case ROQT: return false; j
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Precombining Node

Always check for
unexpected values!

Ejefault: throw new PanicException() j

Art of Multiprocessor Programming
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Combining Phase

Co D

7 N
, .

- 1st thread locked out
.ﬂ ! until 2nd provides
3 value
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Combining Phase

Co D

7 N
Y

2nd thread deposits value
" ! to be combined, unlocks
+ . node, & waits ...

@ P
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Combining Phase

1st thread moves up the
tree with combined
value ...
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Combining (reloaded)
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Combining (reloaded)

¢

’ 1st thread is alone,

"\/, locks out late
partner
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Combining (reloaded)
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Combining (reloaded)

2nd thread’s phase 1
visit locked out

Sl L
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Combining Navigation

node = myLeaf;

int combined = 1;

while (node != stop) {
combined = node.combine(combined);
stack.push(node);
node = node.parent;

}

Art of Multiprocessor Programming
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Combining Navigation

Eode = myLeaf;

Start at leaf
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Combining Navigation

Et combined = 1;

Add 1

Art of Multiprocessor Programming
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Combining Navigation

E/vhile (node != stop) {

Revisit nodes visited
in phase 1
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Combining Navigation

Ecombined = node.combine(combined); j

Accumulate combined
values, if any
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Combining Navigation

We will retraverse path in

reverse order ...
Etack.push(nod%
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Combining Navigation

@de = node.p%
Y
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Combining Phase Node

synchronized int combine(int combined) {
while (locked) wait();
locked = true;
firstValue = combined;
switch (cStatus) {
case FIRST:
return firstValue;
case SECOND:
return firstValue + secondValue;
default: ...

}
}

Art of Multiprocessor Programming
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Combining Phase Node

Ewhile (locked) wait():

Wait until node is unlocked
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Combining Phase Node

Eocked = true;
Lock out late attempts

to combine
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Combining Phase Node

EfirstVaIue = combined:

Remember our contribution
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Combining Phase Node

Eswitch (cStat{

Check status

Art of Multiprocessor Programming
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Combining Phase Node

1st thread is alone

case FIRST:
return firstValue;
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Combining Node

Combine with

2nd thread

L

case SECOND:
return firstValue + secondValue;

Art of Multiprocessor Programming
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Operation Phase

Add comBined value to root,
start back down (phase 4)
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Operation Phase (reloaded)

Art of Multiprocessor Programming 80



Operation Phase (reloaded)

7 N\
, .

RSN
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Operation Phase Navigation

prior = stop.op(combined);
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Operation Phase Navigation
prior = stop.op(combined); j

Get result of
combining
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Operation Phase Node

synchronized int op(int combined) {
switch (cStatus) {
case ROQT: int oldValue = result;
result += combined,;
return oldValue;
case SECOND: secondValue = combined;
locked = false; notifyAll();
while (cStatus = CStatus.DONE) wait();
locked = false; notifyAll();
cStatus = CStatus.IDLE;
return result;
default: ...

Art of Multiprocessor Programming
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At Root

case ROOT: int oldValue = result;
result += combined;
return oldValue;

Add sum to root,
return prior value
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Intermediate Node

Ease SECOND: secondValue = combined: j

Deposit value for later
combining ...
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Intermediate Node

Eocked = false; notifyAII();Nj

Unlock node, notify
1st thread
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Intermediate Node

Wait for 1st thread
to deliver results

VAN

[ while (cStatus != CStatus.DONE) wait() ]
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Intermediate Node

Unlock node &
return

locked = false; notifyAll();
cStatus = CStatus.IDLE;
return result;

Art of Multiprocessor Programming 89



Distribution Phase

& @% =
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Distribution Phase
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Distribution Phase

Art of Multiprocessor Programming 92



Distribution Phase
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Distribution Phase Navigation

while (Istack.empty()) {
node = stack.pop();
node.distribute(prior);

}

return prior;
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Distribution Phase Navigation
Ifﬂle (Istack.empty()) {

node = stack.pop();

Traverse path in
reverse order
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Distribution Phase Navigation

Ewode.distribute(prior); |

Distribute results to
waiting 2nd threads
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Distribution Phase Navigation

Ereturn prior;

Return result
to caller
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Distribution Phase

synchronized void distribute(int prior) {
switch (cStatus) {

case FIRST:
cStatus = CStatus.IDLE;
locked = false; notifyAll();
return;

case SECOND:
result = prior + firstValue;
cStatus = CStatus.DONE; notifyAll();
return;

default: ...

Art of Multiprocessor Programming
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Distribution Phase

case FIRST: )

cStatus = CStatus.IDLE;
locked = false; notifyAll();

\return;

No combining, unlock
node & reset
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Distribution Phase

Notify 2nd thread that
result is available

" case SECOND:

result = prior + firstValue;
cStatus = CStatus.DONE; notifyAll();

\_return;

/\
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Bad News: High Latency

Log n
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Good News: Real Parallelism

1 thread

+2 T 43
|| i 2 threads
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Throughput Puzzles

e Ideal circumstances
- All n threads move together, combine
- n increments in O(log n) time

e Worst circumstances
- All n threads slightly skewed, locked out
- n increments in O(n - log n) time
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Index Distribution Benchmark

void indexBench(int iters, int work) {
while (int i < iters) {
| = r.getAndIncrement();
Thread.sleep(random() % work);

1}
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Index Distribution Benchmark

int iters, 1)

How many iterations
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Index Distribution Benchmark

Int work j

Expected time between
incrementing counter
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Index Distribution Benchmark

I = r.getAndIncrement(); ]

Take a number
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Index Distribution Benchmark

l:'l"h—reaa -Sleep(random() % V wor‘K)_\J;

P

Pretend to work
(more work, less concurrency)
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Performance Benchmarks

o Alewife e Throughput:
_ NUMA architecture - average number of inc
- Simulated operations
in 1 million cycle
period.
MIT - ALEWIFE

e Latency:

- average number of
simulator cycles
per inc operation.
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Performance
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The Combining Paradigm

e Implements any RMW operation

« When tree is loaded
- Takes 2 log n steps
- for n requests

e Very sensitive to load fluctuations:
- if the arrival rates drop
- the combining rates drop
- overall performance deteriorates!
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Combining Load Sensitivity

Throughput

Notice Load Fluctuations

processors
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Combining Rate vs Work

Throughput
70,0
/ = W=5000
~ W=100
35,0

17,5

0,0 -

1 2 4 8 16 31 48 64 processors
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Conclusions

e Combining Trees
- Work well under high contention
- Sensitive to load fluctuations
- Can be used for getAndMumble() ops
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