Barrier Synchronization

Christof Fetzer, TU Dresden

Based on slides by Maurice Herlihy
and Nir Shavit

Simple Video Game

e Prepare frame for display
- By graphics coprocessor

e “soft real-time” application
- Need at least 35 frames/second
- OK to mess up rarely

Art of Multiprocessor Programming

Simple Video Game

while (true) {
frame.prepare();
frame.display();

}

Art of Multiprocessor Programming

Simple Video Game

while (true) {
frame.prepare();
frame.display();

}

 What about overlapping work?
- 1st thread displays frame
- 2nd prepares next frame

Art of Multiprocessor Programming

Two-Phase Rendering

while (true) { while (true) {
if (phase) { if (phase) {
frame[0].display(); frame[1].prepare();
} else { } else {
frame[1].display(); frame[0].prepare();
} }
phase = !phase; phase = !phase;
} }

Art of Multiprocessor Programming

Two-Phase Rendering

EfFamﬁ.display(); frame[1].prepare();]

Even phases

Art of Multiprocessor Programming

Two-Phase Rendering

[frame[1].display(); frame[0].prepare();]

odd phases

Art of Multiprocessor Programming

Synchronization Problems

 How do threads stay in phase?

e Too early?
- “we render no frame before its time”

e Too late?
- Recycle memory before frame is displayed

Art of Multiprocessor Programming

|deal Parallel Computation

Art of Multiprocessor Programming

|deal Parallel Computation

g >

Art of Multiprocessor Programming 9

|deal Parallel Computation

g >

Art of Multiprocessor Programming 10

|deal Parallel Computation

Art of Multiprocessor Programming

10

Real-Life Parallel Computation

Art of Multiprocessor Programming

11

Real-Life Parallel Computation

A |
R

g >

Art of Multiprocessor Programming 11

Real-Life Parallel Computation

| "N
(LT
®‘ Q-" <
g O s

Art of Multiprocessor Programming 12

Real-Life Parallel Computation

g >

Art of Multiprocessor Programming

12

Real-Life Parallel Computation

)

"o

Uh, oh

Art of Multiprocessor Programming

12

Barrier Synchronization

barrier

Art of Multiprocessor Programming

13

Barrier Synchronization

barrier

g >

Art of Multiprocessor Programming

13

Barrier Synchronization

barrier

g >

Art of Multiprocessor Programming

14

Barrier Synchronization

A
LB

Art of Multiprocessor Programming 14

Barrier Synchronization

% Dbarrier

<

Art of Multiprocessor Programming

15

Barrier Synchronization

W

<

barrier

(

Art of Multiprocessor Programming

No thread
enters here

\

et

15

Barrier Synchronization

Until every
thread has left
here

e

g >

W

<

barrier

(

No thread
enters here

\

et

Art of Multiprocessor Programming

15

Why Do We Care?

e Mostly of interest to
- Scientific & numeric computation

e Elsewhere
- Garbage collection
- Less common in systems programming
- Still important topic

Art of Multiprocessor Programming

16

Duality

e Dual to mutual exclusion
- Include others, not exclude them

e Same implementation issues

- Interaction with caches ...
e Invalidation?
e Local spinning?

Art of Multiprocessor Programming

17

Example: Parallel Prefix

3 b c d before
a+b+c
after a a+b | a+b+c
+d

Art of Multiprocessor Programming

18

One thread
Per entry

Parallel Prefix

Art of Multiprocessor Programming

19

Parallel Prefix: Phase 1

a b C d
a a+b b+c c+d

Art of Multiprocessor Programming

20

Parallel Prefix: Phase 2

C

d

W 4 - S

G

a+b

a+b+c

a+b+c

+d

Art of Multiprocessor Programming

21

Parallel Prefix: Phase 2

Art of Multiprocessor Programming

21

Parallel Prefix: Phase 2

a+b

b+c

c+d

d+e

e+f

f+g

g+h

Art of Multiprocessor Programming

21

Parallel Prefix: Phase 2

a+b

b+c

c+d

d+e

e+f

f+g

g+h

Art of Multiprocessor Programming

21

Parallel Prefix: Phase 2

b C d e f g h
a+b b+c c+d d+e e+f f+g g+h
b a+ a+b+ | b+c+ | c+d+ | d+e+ | e+f+
+
2 b+c c+d d+e e+f f+g g+h

Art of Multiprocessor Programming

21

Parallel Prefix: Phase 2

b C d e f g h
a+b b+c c+d d+e e+f f+g g+h
ath a+ a+b b+c c+ d+ e+f+

b+c c+d d+e e+f f+g g+h

Art of Multiprocessor Programming

21

Parallel Prefix: Phase 2

b C d e f g h
a+b b+c g+h
b a+t e+f +
a+
b+c
a+b a+ a+b+ a+b+c+ | a+b+c+d+
b+c c+d b+c+d+e c+d+e+f d+e+f+g| e+f+g+h
Art of Multiprocessor Programming 21

Parallel Prefix: Phase 2

a+b

b+c

c+d

d+e

g+h

e+f+
atb .I .+ .+e\'>f\:'|‘\|‘

a+b

b+c

.--Ti;s-

c+d

b+c+d+e

B a+Db a+b+

c+d+e+f| d+e+f+g

a+b+c+d+

e+f+g+h

Art of Multiprocessor Programming

—

Parallel Prefix

e N threads can compute

- Parallel prefix
- Of N entries
- In log, N rounds

e What if system is asynchronous?
- Why we need barriers

Art of Multiprocessor Programming

22

Prefix

class Prefix extends Thread {
private int[] a;
private int i;
private Barrier b;
public Prefix(int[] a,
Barrier b, int i) {

this.a = a;
this.b = b;
this.i =1;
Y

Art of Multiprocessor Programming

23

Prefix

[private int[] a;

Array of input values

Art of Multiprocessor Programming

24

Prefix

Eprivate int i:

Thread index

Art of Multiprocessor Programming

25

Prefix

Eprivate Barrier b;

Shared barrier

Art of Multiprocessor Programming

26

this.a = a;
this.b = b;
this.i = I;

_

Prefix

Initialize fields

Art of Multiprocessor Programming

27

Where do the Barriers Go?

public void run() {
intd =1, sum = 0;
while (d < N) {

if (i >=d)

sum = a[i-d];

if (i >=d)

ali] += sum;
d=d"*2;
¥
¥

Art of Multiprocessor Programming

28

Where Do the Barriers Go?

public void run() {
intd =1, sum = 0;
while (d < N) {
if (i>=d)
sum = a[i-d];

if (i >=d)
afi] += sum;
d=d"*2;

1

Art of Multiprocessor Programming

29

Where Do the Barriers Go?

public void run() {

intd =1, sum = 0;

while (d < N) {

if (i >= d)

sum = a[i-d]; M
_ ake sure everyone reads before

Eb'awa't();; anyone writes

if (i >= d)

ali] += sum
d=d*2
33

Art of Multiprocessor Programming

30

Where Do the Barriers Go?

public void run() {
intd =1, sum = 0;
while (d < N) {

if (i>=d)

>N = ?5"11; Make sure everyone reads before
[b.awalt(), anyone writes
if (i >= d)
afi] +=sum;

b.await();
d=d~*2;
1

Art of Multiprocessor Programming

31

Where Do the Barriers Go?

public void run() {
intd =1, sum = 0;
while (d < N) {

if (i >=d)

== ?LJi'd]; Make sure everyone reads before
Eb.awalt(), anyone writes
if (i >= d)

i e= s, Make sure everyone writes
(bawait);, Ler before anyone reads
d=d*2;
33

Art of Multiprocessor Programming

32

Barrier Implementations

e Cache coherence
- Spin on locally-cached locations?
- Spin on statically-defined locations?

e Latency
- How many steps?
e Symmetry
- Do all threads do the same thing?

Art of Multiprocessor Programming

33

Barriers

public class Barrier {
Atomicinteger count;
Int size;
public Barrier(int n){
count = Atomicinteger(n);
Size = n;
Y
public void await() {
if (count.getAndDecrement()==1) {
count.set(size);
}else {
while (count.get() != 0);
J338;

AIL O MULLIPTocessor Frogrdaitiming

Barriers

[Atomiclnteger count;

Number threads not
yet arrived

Art of Multiprocessor Programming

35

Barriers

[intsize; L Number threads
™ ——— participating

g

Art of Multiprocessor Programming

Barriers

count = Atomicinteger(n);
size = n;

Art of Multiprocessor Programming

Initialization

37

Barriers

Principal method

[public void await() {

Art of Multiprocessor Programming

38

Barriers

If I’'m last, reset fields
for next time

L

If (count.getAndDecrement()==1) { :I
count.set(size);

Art of Multiprocessor Programming

39

Barriers

Otherwise, wait for
everyone else

}else {
I: while (count.get() != 0); j

Art of Multiprocessor Programming

40

Barriers

public class Barrier {

Atomicinteger count;

int size;

public Barrier(int n){
count = Atomicinteger(n);

}SiZE[What’s wrong with this protocol?]

public void await() {

If (count.getAndDecrement()==1) {
count.set(size);

} else {
while (count.get() !=0);

b3dd;

Art of Multiprocessor Programming

41

Reuse

Barrier b = new Barrier(n);
while (mumble()) {
work();

b.await()

}

Art of Multiprocessor Programming

42

Reuse

Barrier b = new Barrier(n);
while (mumble()) {

[work :?_ Do work

D. awalt(

}

Art of Multiprocessor Programming

42

Reuse

Barrier b = new Barrier(n);
while (mumble()) {

work(); ? Do work
.awailt() synchronize

;

Art of Multiprocessor Programming

42

Reuse

Barrier b = new Barrier(n);
while (mumble()) {

work(); ; Do work repeat
.awailt() synchronize

Art of Multiprocessor Programming

42

Barriers

public class Barrier {

Atomiclnteger count;

Int size;

public Barrier(int n){
count = Atomicinteger(n);
Size =n;

Y

public void await() {
iIf (count.getAndDecrement()==1) {
count.set(size);
}else {
while (count.get() != 0);

}}}} Art of Multiprocessor Programming

43

Barriers

Waiting for Phase
1 to finish

[while (count.get() = 0);]

Art of Multiprocessor Programming

44

Barriers

Lif (count.getAndDecrement()==1)

Waiting for Phase
1 to finish
SO over,
—

[while (count.get() = 0); |

/

]

45

Barriers

Prepare for
phase 2
S

count.set(size);]

while (count.get() != 0);

ATC O MULCtipi OCESSOr Prograriiing 46

1 to finish

count.set(size);

while (count.get(z 1= 0); |

Basic Problem

e One thread “wraps around” to start
phase 2

e While another thread is still waiting for
phase 1

e One solution:
- Always use two barriers

Art of Multiprocessor Programming 48

Sense-Reversing Barriers

public class Barrier {

Atomiclnteger count;

int size;

volatile boolean sense = false;

threadSense = new ThreadlLocal<boolean>...

public void await {
boolean mySense = threadSense.get();
if (count.getAndDecrement()==1) {
count.set(size); sense = mySense
}else {
while (sense != mySense) {}

}

threadSense.set(!ImySense)}}}

Art of Multiprocessor Programming

49

Sense-Reversing Barriers

Completed odd or
even-numbered
phase?

E)Iatile boolean sense = false;

Art of Multiprocessor Programming 50

Sense-Reversing Barriers

Store sense for next
phase

o

G
E{hreadSense = new ThreadlLocal<boolean>... j

Art of Multiprocessor Programming

51

Sense-Reversing Barriers

Get new sense
determined by last phase

%

[boolean mySense = threadSense.get();]

Art of Multiprocessor Programming

52

Sense-Reversing Barriers

If I’m last, reverse sense
for next time

g

(count.getAndDecrement()==1) {
ount.set(size); sense = mySense

Art of Multiprocessor Programming

53

Sense-Reversing Barriers

Otherwise, wait for sense
to flip

Evhile (sense = mySense) {} | I

Art of Multiprocessor Programming

54

Sense-Reversing Barriers

Prepare sense for next
phase

@readSense.set(!mySense)}}} | I

Art of Multiprocessor Programming

55

Combining Tree Barriers

e Reduce contention

 Split large barrier into tree of small
barriers

e Requests go up the tree and
notifications down

e Adds latency

Art of Multiprocessor Programming

56

Combining Tree Barriers

Art of Multiprocessor Programming

56

Combining Tree Barriers

Y N
7 N\
Y N
7 N

Art of Multiprocessor Programming

56

Combining Tree Barriers

Art of Multiprocessor Programming

Combining Tree Barrier

public class Node{
Atomicinteger count; int size;
Node parent; volatile boolean sense;

public void await() {...

if (count.getAndDecrement()==1) {
if (parent != null)
parent.await()

count.set(size);

sense = mySense

} else {

while (sense = mySense) {}

b33

Art of Multiprocessor Programming

Combining Tree Barrier

Parent barrier in tree

[Node parent; j/

Art of Multiprocessor Programming

59

Combining Tree Barrier

/

[if (count.getAndDecrement()==1) { |

Am | last?

Art of Multiprocessor Programming

60

Combining Tree Barrier

Proceed to parent
barrier

Efp

(parent != null)
arent.await();

Art of Multiprocessor Programming

61

Combining Tree Barrier

Prepare for next
phase

Eount.set(size);

Art of Multiprocessor Programming

62

Combining Tree Barrier

Notify others at this
node

[sense = mySense

Art of Multiprocessor Programming

63

Combining Tree Barrier

I’m not last, so wait
for notification

[while (sense = mySense) {} |

Art of Multiprocessor Programming

64

Combining Tree Barrier

e No sequential bottleneck
- Parallel getAndDecrement() calls

« Low memory contention
- Same reason

e Cache behavior

- Local spinning on bus-based architecture
- Not so good for NUMA

Art of Multiprocessor Programming

65

Remarks

e Everyone spins on sense field
- Local spinning on bus-based (good)

- Network hot-spot on distributed
architecture (bad)

e Not really scalable

Art of Multiprocessor Programming

66

Tournament Tree Barrier

e If tree nodes have fan-in 2
- Don’t need to call getAndDecrement()
- Winner chosen statically

e At level i
- If i-th bit of id is 0, move up
- Otherwise keep back

Art of Multiprocessor Programming

67

Tournament Tree Barriers

Art of Multiprocessor Programming

68

Tournament Tree Barriers

Art of Multiprocessor Programming

69

Tournament Tree Barriers

All flags blue

Art of Multiprocessor Programming

69

Tournament Tree Barriers

va A
- wivar

Art of Multiprocessor Programming

70

Tournament Tree Barriers

v e

Loser thread sets
winner’s flag

Art of Multiprocessor Programming

70

Tournament Tree Barriers

Art of Multiprocessor Programming

71

Tournament Tree Barriers

]

Loser spins on
own flag

Art of Multiprocessor Programming 71

Tournament Tree Barriers

Art of Multiprocessor Programming

72

Tournament Tree Barriers

b

K, WA

Winner spins
@ on own flag

Art of Multiprocessor Programming

Tournament Tree Barriers

b

Ko

>

Art of Multiprocessor Programming

73

Tournament Tree Barriers

Winner sees own
flag, moves up,
spins

Art of Multiprocessor Programming 73

Tournament Tree Barriers

P =
=

-

: 4
5D et

2
W

Art of Multiprocessor Programming 74

Tournament Tree Barriers

P =
=

-

: 4
5D et

<
P

Art of Multiprocessor Programming 74

Tournament Tree Barriers

Tournament Tree Barriers

Tournament Tree Barriers

P =
=

-

-,

@ @ @‘

Art of Multiprocessor Programming

Tournament Tree Barriers

-

5%

<
L%

Art of Multiprocessor Programming 74

Tournament Tree Barriers

B

e ‘_i-)

W

Art of Multiprocessor Programming

Tournament Tree Barriers

B

e ‘-Q)

L%

Art of Multiprocessor Programming

Tournament Tree Barriers

<

b=
a

o R

<D Oy

W

Art of Multiprocessor Programming 74

Tournament Tree Barriers

B KA
e 8

<
L%

Art of Multiprocessor Programming 75

Tournament Tree Barriers

B KA
e 8

<
L%

Art of Multiprocessor Programming 75

Tournament Tree Barriers

B KA
e 8

<
L%

Art of Multiprocessor Programming 75

Tournament Tree Barriers

Sense-reversing: next time use
blue flags

Art of Multiprocessor Programming

75

Tournament Barrier

class TBarrier {
boolean flag;
TBarrier partner;
TBarrier parent;
boolean top;

Art of Multiprocessor Programming

76

Tournament Barrier

Eboolean flag; j\ Notifications

delivered here

Art of Multiprocessor Programming

77

Tournament Barrier

Other thead at

[TBarrier partner; ; same level

Art of Multiprocessor Programming

78

Tournament Barrier

Parent (winner) or
null (loser)

EI'Barrier parent; i=

Art of Multiprocessor Programming

79

Tournament Barrier

Am | the root?

@OOlean tc{

Art of Multiprocessor Programming

80

Tournament Barrier

void await(boolean mySense) {
if (top) {
return;
} else if (parent = null) {
while (flag != mySense) {};
parent.await(mySense);
partner.flag = mySense;
}else {
partner.flag = mySense;
while (flag = mySense) {};

111

Art of Multiprocessor Programming

81

Tournament Barrier

Current sense

Eboolean mySense) 7

if (top) {
return;

L Le root, c’est moi

Art of Multiprocessor Programming

82

Tournament Barrier

| am already a winner

[' elseif (parent |= nuII%

Art of Multiprocessor Programming

83

Tournament Barrier

Wait for partner

[while (flag T= mySense) {};

Art of Multiprocessor Programming

84

Tournament Barrier

Synchronize upstairs

[parent.await(mySense);

Art of Multiprocessor Programming

85

Tournament Barrier

Inform partner

Epartner.flag = mySense;

Art of Multiprocessor Programming

86

Tournament Barrier

Inform partner

Epartner.flag = mySense;

Order is important (why?)

Art of Multiprocessor Programming

87

}else {

Tournament Barrier

Natural-born loser

Art of Multiprocessor Programming

88

Tournament Barrier

Tell partner I’m here

Epartner.flag = mySense;

Art of Multiprocessor Programming

89

Tournament Barrier

Wait for notification
from partner

Evhile (flag |= mySense) {};

Art of Multiprocessor Programming

90

Remarks

e No need for read-modify-write calls

e Each thread spins on fixed location

- Good for bus-based architectures
- Good for NUMA architectures

Art of Multiprocessor Programming

91

ldeas So Far

e Sense-reversing
- Reuse without reinitializing

e« Combining tree
- Like counters, locks ...

e Tournament tree
- Optimized combining tree

Art of Multiprocessor Programming

95

Which is best for Multicore?

e On a cache coherent multicore chip:
perhaps none of the above...

e Here is another (arguably) better
algorithm ...

Art of Multiprocessor Programming

96

Static Tree Barrier

5

L
L%

0%

One node per thread,
statically assigned

Art of Multiprocessor Programming 97

Static Tree Barrier

?

Sense-reversing flag

Art of Multiprocessor Programming 98

Static Tree Barrier

SR

Node has count of
missing children

Art of Multiprocessor Programming 99

Static Tree Barrier

SR

Art of Multiprocessor Programming 100

Static Tree Barrier

Art of Multiprocessor Programming 100

Static Tree Barrier

Art of Multiprocessor Programming 101

Static Tree Barrier

My-counter is
zero, decrement
parent

Art of Multiprocessor Programming 101

Static Tree Barrier

Art of Multiprocessor Programming 102

Static Tree Barrier

[]
]
L]

L 4

YgEEEEE®

4EpEEEEES

Art of Multiprocessor Programming 103

Static Tree Barrier

Art of Multiprocessor Programming 103

Static Tree Barrier

Art of Multiprocessor Programming 104

Static Tree Barrier

Art of Multiprocessor Programming 105

Static Tree Barrier

Art of Multiprocessor Programming 105

Static Tree Barrier

Art of Multiprocessor Programming 106

Static Tree Barrier

106

Static Tree Barrier

107

Static Tree Barrier

Art of Multiprocessor Programming 108

Static Tree Barrier

Art of Multiprocessor Programming 108

tic Tree Barrier

Art of Multiprocessor Programming

109

1tic Tree Barrier

Art of Multiprocessor Programming 110

Static Tree Barrier

Art of Multiprocessor Programming 111

tatic Tree Barrier

Art of Multiprocessor Programming 111

Static Tree Barrier

SR

Art of Multiprocessor Programming 112

Remarks

e Very little cache traffic
e Minimal space overhead

e On message-passing architecture
- Send notification & sense down tree

Art of Multiprocessor Programming 113

