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Simple Video Game

e Prepare frame for display
- By graphics coprocessor

e “soft real-time” application
- Need at least 35 frames/second
- OK to mess up rarely
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Simple Video Game

while (true) {
frame.prepare();
frame.display();

}
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Simple Video Game

while (true) {
frame.prepare();
frame.display();

}

 What about overlapping work?
- 1st thread displays frame
- 2nd prepares next frame
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Two-Phase Rendering

while (true) { while (true) {
if (phase) { if (phase) {
frame[0].display(); frame[1].prepare();
} else { } else {
frame[1].display(); frame[0].prepare();
} }
phase = !phase; phase = !phase;
} }
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Two-Phase Rendering

EfFamﬁ.display(); frame[1].prepare(); ]

Even phases
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Two-Phase Rendering

[frame[1].display(); frame[0].prepare(); ]

odd phases
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Synchronization Problems

 How do threads stay in phase?

e Too early?
- “we render no frame before its time”

e Too late?
- Recycle memory before frame is displayed
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|deal Parallel Computation
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Real-Life Parallel Computation
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Real-Life Parallel Computation
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Real-Life Parallel Computation
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Real-Life Parallel Computation
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Real-Life Parallel Computation
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Uh, oh
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Barrier Synchronization

barrier
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Barrier Synchronization

barrier
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Barrier Synchronization
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Barrier Synchronization
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Barrier Synchronization
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Barrier Synchronization
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Barrier Synchronization

Until every
thread has left
here
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Why Do We Care?

e Mostly of interest to
- Scientific & numeric computation

e Elsewhere
- Garbage collection
- Less common in systems programming
- Still important topic
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Duality

e Dual to mutual exclusion
- Include others, not exclude them

e Same implementation issues

- Interaction with caches ...
e Invalidation?
e Local spinning?
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Example: Parallel Prefix

3 b c d before
a+b+c
after a a+b | a+b+c
+d
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One thread
Per entry

Parallel Prefix
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Parallel Prefix: Phase 1

a b C d
a a+b b+c c+d
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Parallel Prefix: Phase 2
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a+b+c

a+b+c

+d
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Parallel Prefix: Phase 2
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Parallel Prefix: Phase 2

a+b

b+c

c+d

d+e

e+f

f+g

g+h
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Parallel Prefix: Phase 2

a+b

b+c

c+d

d+e

e+f

f+g

g+h
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Parallel Prefix: Phase 2

b C d e f g h
a+b b+c c+d d+e e+f f+g g+h
b a+ a+b+ | b+c+ | c+d+ | d+e+ | e+f+
+
2 b+c c+d d+e e+f f+g g+h
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Parallel Prefix: Phase 2

b C d e f g h
a+b b+c c+d d+e e+f f+g g+h
ath a+ a+b b+c c+ d+ e+f+

b+c c+d d+e e+f f+g g+h
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Parallel Prefix: Phase 2

b C d e f g h
a+b b+c g+h
b a+t e+f +
a+
b+c
a+b a+ a+b+ a+b+c+ | a+b+c+d+
b+c c+d b+c+d+e c+d+e+f d+e+f+g| e+f+g+h
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Parallel Prefix: Phase 2

a+b

b+c

c+d

d+e

g+h

e+f+
atb .I .+ .+e\'>f\:'|‘\|‘

a+b

b+c

.--Ti;s-

c+d

b+c+d+e

B a+Db a+b+

c+d+e+f| d+e+f+g

a+b+c+d+

e+f+g+h
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Parallel Prefix

e N threads can compute

- Parallel prefix
- Of N entries
- In log, N rounds

e What if system is asynchronous?
- Why we need barriers

Art of Multiprocessor Programming
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Prefix

class Prefix extends Thread {
private int[] a;
private int i;
private Barrier b;
public Prefix(int[] a,
Barrier b, int i) {

this.a = a;
this.b = b;
this.i =1;
Y
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Prefix

[ private int[] a;

Array of input values
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Prefix

Eprivate int i:

Thread index
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Prefix

Eprivate Barrier b;

Shared barrier
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this.a = a;
this.b = b;
this.i = I;

\_

Prefix

Initialize fields
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Where do the Barriers Go?

public void run() {
intd =1, sum = 0;
while (d < N) {

if (i >=d)

sum = a[i-d];

if (i >=d)

ali] += sum;
d=d"*2;
¥
¥
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Where Do the Barriers Go?

public void run() {
intd =1, sum = 0;
while (d < N) {
if (i>=d)
sum = a[i-d];

if (i >=d)
afi] += sum;
d=d"*2;

1
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Where Do the Barriers Go?

public void run() {

intd =1, sum = 0;

while (d < N) {

if (i >= d)

sum = a[i-d]; M
_ ake sure everyone reads before

Eb'awa't();; anyone writes

if (i >= d)

ali] += sum
d=d*2
33
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Where Do the Barriers Go?

public void run() {
intd =1, sum = 0;
while (d < N) {

if (i>=d)

>N = ?5"11; Make sure everyone reads before
[b.awalt(), anyone writes
if (i >= d)
afi] +=sum;

b.await();
d=d~*2;
1

Art of Multiprocessor Programming

31



Where Do the Barriers Go?

public void run() {
intd =1, sum = 0;
while (d < N) {

if (i >=d)

== ?LJi'd]; Make sure everyone reads before
Eb.awalt(), anyone writes
if (i >= d)

i e= s, Make sure everyone writes
(bawait);,  Ler before anyone reads
d=d*2;
33
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Barrier Implementations

e Cache coherence
- Spin on locally-cached locations?
- Spin on statically-defined locations?

e Latency
- How many steps?
e Symmetry
- Do all threads do the same thing?
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Barriers

public class Barrier {
Atomicinteger count;
Int size;
public Barrier(int n){
count = Atomicinteger(n);
Size = n;
Y
public void await() {
if (count.getAndDecrement()==1) {
count.set(size);
}else {
while (count.get() != 0);
J338;

AIL O MULLIPTocessor Frogrdaitiming



Barriers

[ Atomiclnteger count;

Number threads not
yet arrived
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Barriers

[intsize; L Number threads
™ ——— participating

g
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Barriers

count = Atomicinteger(n);
size = n;

Art of Multiprocessor Programming
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Barriers

Principal method

[ public void await() {
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Barriers

If I’'m last, reset fields
for next time

L

If (count.getAndDecrement()==1) { :I
count.set(size);
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Barriers

Otherwise, wait for
everyone else

}else {
I: while (count.get() != 0); j
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Barriers

public class Barrier {

Atomicinteger count;

int size;

public Barrier(int n){
count = Atomicinteger(n);

}SiZE[ What’s wrong with this protocol? ]

public void await() {

If (count.getAndDecrement()==1) {
count.set(size);

} else {
while (count.get() !=0);

b3dd;
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Reuse

Barrier b = new Barrier(n);
while ( mumble() ) {
work();

b.await()

}
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Reuse

Barrier b = new Barrier(n);
while ( mumble() ) {

[work :?_ Do work

D. awalt(

}
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Reuse

Barrier b = new Barrier(n);
while ( mumble() ) {

work(); ? Do work
.awailt() synchronize

;
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Reuse

Barrier b = new Barrier(n);
while ( mumble() ) {

work(); ; Do work repeat
.awailt() synchronize
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Barriers

public class Barrier {

Atomiclnteger count;

Int size;

public Barrier(int n){
count = Atomicinteger(n);
Size =n;

Y

public void await() {
iIf (count.getAndDecrement()==1) {
count.set(size);
}else {
while (count.get() != 0);

}}}} Art of Multiprocessor Programming
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Barriers

Waiting for Phase
1 to finish

[while (count.get() = 0); ]
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Barriers

Lif (count.getAndDecrement()==1)

Waiting for Phase
1 to finish
SO over,
—

[ while (count.get() = 0); |

/

]
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Barriers

Prepare for
phase 2
S

count.set(size); ]

while (count.get() != 0);
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1 to finish

count.set(size);

while (count.get(z 1= 0); |




Basic Problem

e One thread “wraps around” to start
phase 2

e While another thread is still waiting for
phase 1

e One solution:
- Always use two barriers
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Sense-Reversing Barriers

public class Barrier {

Atomiclnteger count;

int size;

volatile boolean sense = false;

threadSense = new ThreadlLocal<boolean>...

public void await {
boolean mySense = threadSense.get();
if (count.getAndDecrement()==1) {
count.set(size); sense = mySense
}else {
while (sense != mySense) {}

}

threadSense.set(!ImySense)}}}

Art of Multiprocessor Programming
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Sense-Reversing Barriers

Completed odd or
even-numbered
phase?

E)Iatile boolean sense = false;
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Sense-Reversing Barriers

Store sense for next
phase

o

G
E{hreadSense = new ThreadlLocal<boolean>... j
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Sense-Reversing Barriers

Get new sense
determined by last phase

%

[ boolean mySense = threadSense.get(); ]
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Sense-Reversing Barriers

If I’m last, reverse sense
for next time

g

(count.getAndDecrement()==1) {
ount.set(size); sense = mySense

Art of Multiprocessor Programming
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Sense-Reversing Barriers

Otherwise, wait for sense
to flip

Evhile (sense = mySense) {} | I
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Sense-Reversing Barriers

Prepare sense for next
phase

@readSense.set(!mySense)}}} | I
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Combining Tree Barriers

e Reduce contention

 Split large barrier into tree of small
barriers

e Requests go up the tree and
notifications down

e Adds latency
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Combining Tree Barriers
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Combining Tree Barriers

Y N
7 N\
Y N
7 N
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Combining Tree Barriers
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Combining Tree Barrier

public class Node{
Atomicinteger count; int size;
Node parent; volatile boolean sense;

public void await() {...

if (count.getAndDecrement()==1) {
if (parent != null)
parent.await()

count.set(size);

sense = mySense

} else {

while (sense = mySense) {}

b33

Art of Multiprocessor Programming



Combining Tree Barrier

Parent barrier in tree

[Node parent; j/
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Combining Tree Barrier

/

[ if (count.getAndDecrement()==1) { |

Am | last?
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Combining Tree Barrier

Proceed to parent
barrier

Efp

(parent != null)
arent.await();
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Combining Tree Barrier

Prepare for next
phase

Eount.set(size);
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Combining Tree Barrier

Notify others at this
node

[ sense = mySense
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Combining Tree Barrier

I’m not last, so wait
for notification

[ while (sense = mySense) {} |
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Combining Tree Barrier

e No sequential bottleneck
- Parallel getAndDecrement() calls

« Low memory contention
- Same reason

e Cache behavior

- Local spinning on bus-based architecture
- Not so good for NUMA

Art of Multiprocessor Programming
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Remarks

e Everyone spins on sense field
- Local spinning on bus-based (good)

- Network hot-spot on distributed
architecture (bad)

e Not really scalable
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Tournament Tree Barrier

e If tree nodes have fan-in 2
- Don’t need to call getAndDecrement()
- Winner chosen statically

e At level i
- If i-th bit of id is 0, move up
- Otherwise keep back
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Tournament Tree Barriers
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Tournament Tree Barriers
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Tournament Tree Barriers

All flags blue
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Tournament Tree Barriers

va A
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Tournament Tree Barriers

v e

Loser thread sets
winner’s flag
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Tournament Tree Barriers
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Tournament Tree Barriers

]

Loser spins on
own flag
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Tournament Tree Barriers
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Tournament Tree Barriers

b

K, WA

Winner spins
@ on own flag
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Tournament Tree Barriers

b
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Tournament Tree Barriers

Winner sees own
flag, moves up,
spins
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Tournament Tree Barriers
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Tournament Tree Barriers
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Tournament Tree Barriers
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Tournament Tree Barriers
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Tournament Tree Barriers
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Tournament Tree Barriers
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Tournament Tree Barriers
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Tournament Tree Barriers
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Tournament Tree Barriers
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Tournament Tree Barriers
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Tournament Tree Barriers

Sense-reversing: next time use
blue flags
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Tournament Barrier

class TBarrier {
boolean flag;
TBarrier partner;
TBarrier parent;
boolean top;

Art of Multiprocessor Programming
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Tournament Barrier

Eboolean flag; j\ Notifications

delivered here
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Tournament Barrier

Other thead at

[ TBarrier partner; ; same level
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Tournament Barrier

Parent (winner) or
null (loser)

EI'Barrier parent; i=
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Tournament Barrier

Am | the root?

@OOlean tc{
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Tournament Barrier

void await(boolean mySense) {
if (top) {
return;
} else if (parent = null) {
while (flag != mySense) {};
parent.await(mySense);
partner.flag = mySense;
}else {
partner.flag = mySense;
while (flag = mySense) {};

111
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Tournament Barrier

Current sense

Eboolean mySense) 7

if (top) {
return;

L Le root, c’est moi
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Tournament Barrier

| am already a winner

[ ' elseif (parent |= nuII%
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Tournament Barrier

Wait for partner

[while (flag T= mySense) {};
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Tournament Barrier

Synchronize upstairs

[ parent.await(mySense);

Art of Multiprocessor Programming

85



Tournament Barrier

Inform partner

Epartner.flag = mySense;
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Tournament Barrier

Inform partner

Epartner.flag = mySense;

Order is important (why?)
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}else {

Tournament Barrier

Natural-born loser
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Tournament Barrier

Tell partner I’m here

Epartner.flag = mySense;
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Tournament Barrier

Wait for notification
from partner

Evhile (flag |= mySense) {};
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Remarks

e No need for read-modify-write calls

e Each thread spins on fixed location

- Good for bus-based architectures
- Good for NUMA architectures
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ldeas So Far

e Sense-reversing
- Reuse without reinitializing

e« Combining tree
- Like counters, locks ...

e Tournament tree
- Optimized combining tree
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Which is best for Multicore?

e On a cache coherent multicore chip:
perhaps none of the above...

e Here is another (arguably) better
algorithm ...
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Static Tree Barrier

5

L
L%

0%

One node per thread,
statically assigned
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Static Tree Barrier

?

Sense-reversing flag
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Static Tree Barrier

SR

Node has count of
missing children
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Static Tree Barrier

SR
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Static Tree Barrier
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Static Tree Barrier
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Static Tree Barrier

My-counter is
zero, decrement
parent
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Static Tree Barrier
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Static Tree Barrier
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Static Tree Barrier
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Static Tree Barrier
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Static Tree Barrier
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Static Tree Barrier
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Static Tree Barrier
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Static Tree Barrier
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Static Tree Barrier
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Static Tree Barrier
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Static Tree Barrier
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tic Tree Barrier
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1tic Tree Barrier
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Static Tree Barrier
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tatic Tree Barrier
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Static Tree Barrier

SR

Art of Multiprocessor Programming 112



Remarks

e Very little cache traffic
e Minimal space overhead

e On message-passing architecture
- Send notification & sense down tree
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