
The Relative Power of
Synchronization Operations

Queues and Stacks

Christof Fetzer, TU Dresden

Based on slides by Maurice Herlihy
and Nir Shavit

Why is Mutual Exclusion so
wrong?

(2) 2

© Herlihy and Shavit

Asynchronous Interrupts

Swapped out
back at

??? ???

(2) 3

© Herlihy and Shavit

Heterogeneous Processors

??? ???
yawn

(1)

x86-64x86-64
286

4

© Herlihy and Shavit

Fault-tolerance

??? ???

(2) 5

© Herlihy and Shavit

Wait-Free Implementations

Definition: An object implementation is
wait-free if every thread completes a
method in a finite number of steps

No mutual exclusion
– Thread could halt in critical section
– Build mutual exclusion from registers

6

© Herlihy and Shavit

Lock-Free Implementations

Definition: An object implementation is
lock-free if in an infinite execution
infinitely often some method call
finishes (obviously, in a finite number of
steps)

No difference between lock-free and
wait-free for finite executions

7

© Herlihy and Shavit

Basic Questions

• Wait-Free synchronization might be a
good idea in principle

• But how do you do it
– Systematically?
– Correctly?
– Efficiently?

8

© Herlihy and Shavit

Today: Focus on Wait-free

• The rest of today’s discussion will focus
on wait-free implementations

• But the results we present apply
almost verbatim to lock-free ones

9

© Herlihy and Shavit

FIFO Queue: Enqueue Method

q.enq()

10

© Herlihy and Shavit

FIFO Queue: Dequeue Method

q.deq()/

11

© Herlihy and Shavit

Two-Thread Wait-Free Queue
public class LockFreeQueue {
 int head = 0, tail = 0;
 Item[QSIZE] items;
 public void enq(Item x) throws… {
 if (tail-head == QSIZE) { throw…};
 items[tail % QSIZE] = x; tail++;
 }
 public Item deq() {
 if (tail-head == 0) { throw…}
 Item item = items[head % QSIZE];
 head++; return item;
}}

12

© Herlihy and Shavit

Two-Thread Wait-Free Queue
public class LockFreeQueue {
 int head = 0, tail = 0;
 Item[QSIZE] items;
 public void enq(Item x) throws… {
 if (tail-head == QSIZE) { throw…};
 items[tail % QSIZE] = x; tail++;
 }
 public Item deq() {
 if (tail-head == 0) { throw… }
 Item item = items[head % QSIZE];
 head++; return item;
}}

Put object in queue

13

© Herlihy and Shavit

Two-Thread Wait-Free Queue
public class LockFreeQueue {
 int head = 0, tail = 0;
 Item[QSIZE] items;
 public void enq(Item x) throws… {
 if (tail-head == QSIZE) { throw…};
 items[tail % QSIZE] = x; tail++;
 }
 public Item deq() {
 if (tail-head == 0) { throw…}
 Item item = items[head % QSIZE];
 head++; return item;
}}

Increment tail
counter

14

© Herlihy and Shavit

What About Multiple Dequeuers?

15

© Herlihy and Shavit

Grand Challenge

• Implement a FIFO queue
– Wait-free
– Linearizable
– From atomic read-write registers
– Multiple dequeuers

Only new
aspect

(1) 16

© Herlihy and Shavit

Consensus

• While you are thinking about the grand
challenge…

• We will give you another puzzle
– Consensus
– Will be important …

17

© Herlihy and Shavit

Consensus: Each Thread has a
Private Input

32 19

21

18

© Herlihy and Shavit

They Communicate

19

© Herlihy and Shavit

They Agree on One Thread’s
Input

19 19

19

20

© Herlihy and Shavit

Formally: Consensus

Consistent: all threads decide the same
value

Valid: the common decision value is some
thread's input

Wait-free: each thread decides after a
finite number of steps

21

© Herlihy and Shavit

No Wait-Free Consensus using
Registers

??? ???

22

© Herlihy and Shavit

Formally

• Theorem [adapted from Fischer, Lynch,
Paterson]: There is no wait-free
implementation of n-thread consensus,
n>1, from read-write registers even if
only one thread can crash

• Implication: asynchronous computability
fundamentally different from Turing
computability

23

© Herlihy and Shavit

Proof Strategy

• Assume otherwise
• Reason about the properties of any

such protocol
• Derive a contradiction
• Quod Erat Demonstrandum
• Suffices to prove for binary consensus

and n=2

24

© Herlihy and Shavit

Wait-Free Computation

• Either A or B “moves”
• Moving means

– Register read
– Register write

A moves B moves

25

© Herlihy and Shavit

The Two-Move Tree
Initial
state

Final
states

(2) 26

© Herlihy and Shavit

Decision Values

1 0 0 1 1 1
27

© Herlihy and Shavit

Bivalent: Both Possible

1 1 1

bivalent

1 0 0
28

© Herlihy and Shavit

Univalent: Single Value Possible

1 1 1

univalent

1 0 0
29

© Herlihy and Shavit

x-valent: x Only Possible
Decision

0 1 1 1

1-valent

01
30

© Herlihy and Shavit

Claim

• Some initial state is bivalent
• Outcome depends on

– Chance
– Behavior of the scheduler

• Lets prove this claim

31

© Herlihy and Shavit

Both Inputs 0

Univalent: all executions must decide 0

00

(2) 32

© Herlihy and Shavit

Both Inputs 0

Including this solo execution by A

(1)

0

33

© Herlihy and Shavit

Both Inputs 1

All executions must decide 1

11

(2) 34

© Herlihy and Shavit

Both Inputs 1

Including this solo execution by B

(1)

1

35

© Herlihy and Shavit

What if inputs differ?

(2)

10

By Way of contradiction: If univalent
all executions must decide on same value

36

© Herlihy and Shavit

The Possible Executions

0 1

(2)

Include the solo execution by A
that decides 0

37

© Herlihy and Shavit

The Possible Executions

0 1

(2)

Also include the solo execution by B
which we know decides 1

38

© Herlihy and Shavit

Possible Executions Include

• Solo execution by A
must decide 0

• Solo execution by B
must decide 1

0 1

How univalent is
that?
(QED)

39

© Herlihy and Shavit

Summary So Far

• Wait-free computation is a tree
• Bivalent system states

– Outcome not fixed

• Univalent states
– Outcome is fixed
– May not be “known” yet

• 1-Valent and 0-Valent states

40

© Herlihy and Shavit

0-valent

Critical States

1-valent

critical

(3) 41

© Herlihy and Shavit

From a Critical State

c

If A goes first, protocol
decides 0

If B goes first, protocol
decides 1

0-valent 1-valent

42

© Herlihy and Shavit

Reaching Critical State

c
0-valent 1-valent

CB

initially bivalent

CA
univalentbivalent

CBunivalent bivalent

univalentCA

univalent

bivalent

43

© Herlihy and Shavit

Critical States

• Starting from a bivalent initial state
• The protocol can reach a critical state

– Otherwise we could stay bivalent forever
– And the protocol is not wait-free

44

© Herlihy and Shavit

Model Dependency

• So far, memory-independent!
• True for

– Registers
– Message-passing
– Carrier pigeons
– Any kind of asynchronous computation

45

© Herlihy and Shavit

What are the Threads Doing?

• Reads and/or writes
• To same/different registers

46

Completing the Proof

• Lets look at executions that:
– Start from a critical state
– Threads cause state to become univalent

by reading or writing to same/different
registers

– End within a finite number of steps
deciding either 0 or 1

• Show this leads to a contradiction

47

© Herlihy and Shavit

Possible Interactions

x.read() y.read() x.write() y.write()

x.read() ? ? ? ?

y.read() ? ? ? ?

x.write() ? ? ? ?

y.write() ? ? ? ?

A reads x
A reads y

48

© Herlihy and Shavit

Some Thread Reads
A runs solo,
eventually
decides 0

B reads x

1

0

A runs solo,
eventually
decides 1

c

States look the
same to A

Contra
dict

ion

49

© Herlihy and Shavit

Possible Interactions

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no ? ?

y.write() no no ? ?

50

© Herlihy and Shavit

Writing Distinct Registers

A writes y B writes x

10

c

The song is the same

A writes yB writes x

Contra
dict

ion

51

© Herlihy and Shavit

Possible Interactions

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no ? no

y.write() no no no ?

52

© Herlihy and Shavit

Writing Same Registers

States look the
same to A

A writes x B writes x

1
A runs solo,
eventually
decides 1

c

0

A runs solo,
eventually
decides 0 A writes x

Contra
dict

ion

53

© Herlihy and Shavit

That’s All, Folks!

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no no no

y.write() no no no noQED

54

© Herlihy and Shavit

Recap: Atomic Registers Can’t Do
Consensus

• If protocol exists
– It has a bivalent initial state
– Leading to a critical state

• What’s up with the critical state?
– Case analysis for each pair of methods
– As we showed, all lead to a contradiction

55

© Herlihy and Shavit

What Does Consensus have to do
with Concurrent Objects?

56

© Herlihy and Shavit

Consensus Object

public interface Consensus {
 Object decide(Object value);
}

(4) 57

© Herlihy and Shavit

Concurrent Consensus Object

• We consider only one time objects:
each thread can execute a method only
once

• Linearizable to sequential consensus
object in which
– the thread who’s input was decided on

completed its method first

58

© Herlihy and Shavit

Java Jargon Watch

• Define Consensus protocol as an
abstract class

• We implement some methods
• Leave you to do the rest …

59

© Herlihy and Shavit

Generic Consensus Protocol

abstract class ConsensusProtocol
implements Consensus {
 protected Object[] proposed =
 new Object[N];

 private void propose(Object value) {
 proposed[ThreadID.get()] = value;
 }

 abstract public Object
 decide(Object value);
 }}

60

© Herlihy and Shavit

abstract class ConsensusProtocol
implements Consensus {
 protected Object[] proposed =
 new Object[N];

 private void propose(Object value) {
 proposed[ThreadID.get()] = value;
 }

 abstract public Object
 decide(object value);
 }}

Generic Consensus Protocol

Each thread’s
proposed value

61

© Herlihy and Shavit

abstract class ConsensusProtocol
implements Consensus {
 protected Object[] proposed =
 new Object[N];

 private void propose(Object value) {
 proposed[ThreadID.get()] = value;
 }

 abstract public Object
 decide(object value);
 }}

Generic Consensus Protocol

Propose a value

62

© Herlihy and Shavit

abstract class ConsensusProtocol
implements Consensus {
 protected Object[] proposed =
 new Object[N];

 private void propose(Object value) {
 proposed[ThreadID.get()] = value;
 }

 abstract public Object
 decide(object value);
 }}

Generic Consensus Protocol

Decide a value: abstract method means
subclass does the heavy lifting (real

work)

63

Can FIFO Queue Implement
Consensus?

64

© Herlihy and Shavit

FIFO Consensus

propose array

FIFO Queue
with red and
black balls

8

Coveted red ball Dreaded black ball

65

© Herlihy and Shavit

Protocol: Write Value to Array

0 1
0

66

© Herlihy and Shavit

0

Protocol: Take Next Item from
Queue

0 1
8

67

© Herlihy and Shavit

0 1

Protocol: Take Next Item from
Queue

I got the coveted
red ball, so I will
decide my value

I got the dreaded
black ball, so I will
decide the other’s

value from the array
8

68

© Herlihy and Shavit

public class QueueConsensus
 extends ConsensusProtocol {
 private Queue queue;
 public QueueConsensus() {
 queue = new Queue();
 queue.enq(Ball.RED);
 queue.enq(Ball.BLACK);
 }
 …
}

Consensus Using FIFO Queue

69

© Herlihy and Shavit

public class QueueConsensus
 extends ConsensusProtocol {
 private Queue queue;
 public QueueConsensus() {
 queue = new Queue();
 queue.enq(Ball.RED);
 queue.enq(Ball.BLACK);
 }
 …
}

Initialize Queue

8

70

© Herlihy and Shavit

public class QueueConsensus
 extends ConsensusProtocol {
 private Queue queue;
 …
 public decide(object value) {
 propose(value);
 Ball ball = this.queue.deq();
 if (ball == Ball.RED)
 return proposed[i];
 else
 return proposed[1-i];
 }
}

Who Won?

71

© Herlihy and Shavit

public class QueueConsensus
 extends ConsensusProtocol {
 private Queue queue;
 …
 public decide(object value) {
 propose(value);
 Ball ball = this.queue.deq();
 if (ball == Ball.RED)
 return proposed[i];
 else
 return proposed[1-ij];
 }
}

Who Won?

Race to dequeue first
queue item

72

© Herlihy and Shavit

public class QueueConsensus
 extends ConsensusProtocol {
 private Queue queue;
 …
 public decide(object value) {
 propose(value);
 Ball ball = this.queue.deq();
 if (ball == Ball.RED)
 return proposed[i];
 else
 return proposed[1-i];
 }
}

Who Won?

i = ThreadID.get();
I win if I was first

73

© Herlihy and Shavit

public class QueueConsensus
 extends ConsensusProtocol {
 private Queue queue;
 …
 public decide(object value) {
 propose(value);
 Ball ball = this.queue.deq();
 if (ball == Ball.RED)
 return proposed[i];
 else
 return proposed[1-i];
 }
}

Who Won?

Other thread wins if I
was second

74

© Herlihy and Shavit

Why does this Work?

• If one thread gets the red ball
• Then the other gets the black ball
• Winner decides her own value
• Loser can find winner’s value in array

– Because threads write to array
– Before dequeueing from queue

75

© Herlihy and Shavit

Theorem

• We can solve 2-thread consensus using
only
– A two-dequeuer queue, and
– Some atomic registers

76

© Herlihy and Shavit

Implications

• Given
– A consensus protocol from queue and registers

• Assume there exists
– A queue implementation from atomic registers

• Substitution yields:
– A wait-free consensus protocol from atomic

registers

contradiction

77

© Herlihy and Shavit

Corollary

• It is impossible to implement
– a two-dequeuer wait-free FIFO queue
– from read/write memory.

78

© Herlihy and Shavit

Consensus Numbers

• An object X has consensus number n
– If it can be used to solve n-thread

consensus
• Taking any number of instances of X
• together with atomic read/write registers
• and implement n-thread consensus

– But not (n+1)-thread consensus

79

© Herlihy and Shavit

Consensus Numbers

• Theorem
– Atomic read/write registers have

consensus number 1

• Theorem
– Multi-dequeuer FIFO queues have

consensus number at least 2

80

© Herlihy and Shavit

Consensus Numbers Measure
Synchronization Power

• Theorem
– If you can implement X from Y
– And X has consensus number c
– Then Y has consensus number at least c

81

© Herlihy and Shavit 115

Synchronization Speed Limit

• Conversely
– If X has consensus number c
– And Y has consensus number d < c
– Then there is no way to construct a wait-

free implementation of X by Y

• This theorem will be very useful
– Unforeseen practical implications!

Theoretical

Caveat: Certain

weird exceptions
exist

82

Homework

• What is the consensus number of a
wait-free FIFO queue with methods:
– enq(o): enqueue object o
– deq(): dequeue first object
– peek(): get a copy of first object

83

© Herlihy and Shavit

New Grand Challenge

• Consider:
– Write multiple array elements atomically
– Scan any array elements

• Call this problem multiple assignment

84

© Herlihy and Shavit

Multiple Assignment Theorem

• Atomic registers cannot implement
multiple assignment

• Weird or what?
– Single location write/multiple location

read OK (= Atomic Snapshot)
– Multi location write/single location read

impossible

85

© 2007 Herlihy & Shavit 86

Atomic Snapshot

update
scan

© 2007 Herlihy & Shavit 87

Atomic Snapshot

• Array of MRSW atomic registers
• Take instantaneous snapshot of all
• Generalizes to MRMW registers …

© 2007 Herlihy & Shavit 88

Snapshot Interface

public interface Snapshot {
 public int update(int v);
 public int[] scan();
}

© 2007 Herlihy & Shavit 89

Snapshot Interface

public interface Snapshot {
 public int update(int v);
 public int[] scan();
}

Thread i writes v to its register

© 2007 Herlihy & Shavit 90

Snapshot Interface

public interface Snapshot {
 public int update(int v);
 public int[] scan();
}

Instantaneous snapshot of all theads’
registers

© 2007 Herlihy & Shavit 91

Atomic Snapshot

• Collect
– Read values one at a time

• Problem
– Incompatible concurrent collects
– Result not linearizable

Example: Atomic Snapshot MRMW

92

read

update

A: 1, 3, 3

1 2

1 2 3

1 2 3

i

i+1

i+2

thread

4

B: 2, 2, 2

© 2007 Herlihy & Shavit 93

Clean Collects

• Clean Collect
– Collect during which nothing changed
– Can we make it happen?
– Can we detect it?

© 2007 Herlihy & Shavit 94

Simple Snapshot

• Put increasing labels on each entry
• Collect twice
• If both agree,

– We’re done

• Otherwise,
– Try again

1

22
1

7

13

18
12

=

Collect2Collect1

1

22
1

7

13

18
12

© 2007 Herlihy & Shavit 95

Simple Snapshot: Update
public class SimpleSnapshot implements Snapshot {
 private AtomicMRSWRegister[] register;

 public void update(int value) {
 int i = Thread.myIndex();

 LabeledValue oldValue = register[i].read();

 LabeledValue newValue =
 new LabeledValue(oldValue.label+1, value);
 register[i].write(newValue);
 }

(1)

© 2007 Herlihy & Shavit 96

Simple Snapshot: Update
public class SimpleSnapshot implements Snapshot {
 private AtomicMRSWRegister[] register;

 public void update(int value) {
 int i = Thread.myIndex();
 LabeledValue oldValue = register[i].read();
 LabeledValue newValue =
 new LabeledValue(oldValue.label+1, value);
 register[i].write(newValue);
 }

(1)

One single-writer register per thread

© 2007 Herlihy & Shavit 97

Simple Snapshot: Update
public class SimpleSnapshot implements Snapshot {
 private AtomicMRSWRegister[] register;

 public void update(int value) {
 int i = Thread.myIndex();
 LabeledValue oldValue = register[i].read();
 LabeledValue newValue =
 new LabeledValue(oldValue.label+1, value);
 register[i].write(newValue);
 }

(1)

Write each time with higher label

© 2007 Herlihy & Shavit 98

Simple Snapshot: Collect
private LabeledValue[] collect() {
 LabeledValue[] copy =
 new LabeledValue[n];
 for (int j = 0; j < n; j++)
 copy[j] = this.register[j].read();
 return copy;
}

(1)

© 2007 Herlihy & Shavit 99

Simple Snapshot
private LabeledValue[] collect() {
 LabeledValue[] copy =
 new LabeledValue[n];
 for (int j = 0; j < n; j++)
 copy[j] = this.register[j].read();
 return copy;
}

(1)

Just read each register into array

© 2007 Herlihy & Shavit 100

Simple Snapshot: Scan
public int[] scan() {
 LabeledValue[] oldCopy, newCopy;
 oldCopy = collect();
 collect: while (true) {
 newCopy = collect();
 if (!equals(oldCopy, newCopy)) {
 oldCopy = newCopy;
 continue collect;
 }
 return getValues(newCopy);
 }
}

(1)

© 2007 Herlihy & Shavit 101

Simple Snapshot: Scan
public int[] scan() {
 LabeledValue[] oldCopy, newCopy;
 oldCopy = collect();
 collect: while (true) {
 newCopy = collect();
 if (!equals(oldCopy, newCopy)) {
 oldCopy = newCopy;
 continue collect;
 }

 return getValues(newCopy);
 }
}

(1)

Collect once

© 2007 Herlihy & Shavit 102

Simple Snapshot: Scan
public int[] scan() {
 LabeledValue[] oldCopy, newCopy;
 oldCopy = collect();
 collect: while (true) {
 newCopy = collect();
 if (!equals(oldCopy, newCopy)) {
 oldCopy = newCopy;
 continue collect;
 }

 return getValues(newCopy);
 }
}

(1)

Collect once

Collect twice

© 2007 Herlihy & Shavit 103

Simple Snapshot: Scan
public int[] scan() {
 LabeledValue[] oldCopy, newCopy;
 oldCopy = collect();
 collect: while (true) {
 newCopy = collect();
 if (!equals(oldCopy, newCopy)) {
 oldCopy = newCopy;
 continue collect;
 }

 return getValues(newCopy);
 }
}

(1)

Collect once

Collect twice

On mismatch,
try again

© 2007 Herlihy & Shavit 104

Simple Snapshot: Scan
public int[] scan() {
 LabeledValue[] oldCopy, newCopy;
 oldCopy = collect();
 collect: while (true) {
 newCopy = collect();
 if (!equals(oldCopy, newCopy)) {
 oldCopy = newCopy;

 continue collect;
 }
 return getValues(newCopy);
 }
}

(1)

Collect once

Collect twice

On match, return
values

Example

105

read

update

1 2

1 2 3

1 2 3

i

i+1

i+2

thread

B: 2, 2, 2

3

B: 2, 2, 2

© 2007 Herlihy & Shavit 106

Simple Snapshot

• Linearizable
• Update is wait-free

– No unbounded loops

• But Scan can starve
– If interrupted by concurrent update

© 2007 Herlihy & Shavit 107

Wait-Free Snapshot

• Add a scan before every update
• Write resulting snapshot together

with update value
• If scan is continuously interrupted by

updates, scan can take the update’s
snapshot

© 2007 Herlihy & Shavit 108

Wait-free Snapshot
If A’s scan observes that B moved
twice, then B completed an update
while A’s scan was in progress

time

Update

B

≠ ≠
26
24
12

Collect

26
25
12

Collect

26
26
12

Collect

© 2007 Herlihy & Shavit 109

Wait-free Snapshot

time

≠ ≠
26
24
12

Collect

26
24

12

Collect

26
24
12

Collect

Update

A

B

© 2007 Herlihy & Shavit 110

Wait-free Snapshot

time

≠ ≠
26
24
12

Collect

26
24
12

Collect

26
24

12

Collect

A

B
ScanWrite

Update

© 2007 Herlihy & Shavit 111

Wait-free Snapshot

time

≠ ≠
26
24
12

Collect

26
25
12

Collect

26
26
12

Collect

A

B Scan Write

Update

Scan Write

B’s 1st update must have written during 1st collect

So A can steal
result of B’s scan

© 2007 Herlihy & Shavit 112

Wait-free Snapshot

time

≠ ≠
26
24
12

Collect

26
24
12

Collect

26
24
12

Collect

A

B Scan WriteScan Write

But no guarantee that scan
of B’s 1st update can be used…
Why?

© 2007 Herlihy & Shavit 113

Once is not Enough

time

≠
26
25
12

26
26
12

Collect

Update

A

B Scan Write

Why can’t A steal result of B’s scan
Because another update
might have interfered
before the scan

Update

© 2007 Herlihy & Shavit 114

Someone Must Move Twice

time

Update

B

≠ ≠24
12

Collect

26
24
12

Collect

26
24
12

Collect

If we collect n times…some thread
Must move twice (Pigeon hole)

© 2007 Herlihy & Shavit 115

Scan is Wait-free

scan

update

So some thread must
have had clean collect

scan

update

scan

At
most
n-1

depth

© 2007 Herlihy & Shavit 116

Wait-Free Snapshot Label

public class SnapValue {
 public int label;
 public int value;
 public int[] snap;
}

(2)

© 2007 Herlihy & Shavit 117

Wait-Free Snapshot Label

public class SnapValue {
 public int label;
 public int value;
 public int[] snap;
}

(2)

Counter incremented
with each snapshot

© 2007 Herlihy & Shavit 118

Wait-Free Snapshot Label

public class SnapValue {
 public int label;
 public int value;
 public int[] snap;
}

(2)

Actual value

© 2007 Herlihy & Shavit 119

Wait-Free Snapshot Label

public class SnapValue {
 public int label;
 public int value;
 public int[] snap;
}

(2)

most recent snapshot

© 2007 Herlihy & Shavit 120

Wait-free Update
 public void update(int value) {
 int i = Thread.myIndex();
 int[] snap = this.scan();
 SnapValue oldValue = r[i].read();
 SnapValue newValue =
 new SnapValue(oldValue.label+1,
 value, snap);
 r[i].write(newValue);
 }

(2)

© 2007 Herlihy & Shavit 121

Wait-free Scan
 public void update(int value) {
 int i = Thread.myIndex();
 int[] snap = this.scan();
 SnapValue oldValue = r[i].read();
 SnapValue newValue =
 new SnapValue(oldValue.label+1,
 value, snap);
 r[i].write(newValue);
 }

(2)

Take scan

© 2007 Herlihy & Shavit 122

Wait-free Scan
 public void update(int value) {
 int i = Thread.myIndex();
 int[] snap = this.scan();
 SnapValue oldValue = r[i].read();
 SnapValue newValue =
 new SnapValue(oldValue.label+1,
 value, snap);
 r[i].write(newValue);
 }

(2)

Take scan

Label value with scan

© 2007 Herlihy & Shavit 123

Wait-free Scan
 public int[] scan() {
 SnapValue[] oldCopy, newCopy;
 boolean[] moved = new boolean[n];
 oldCopy = collect();
 collect: while (true) {
 newCopy = collect();
 for (int j = 0; j < n; j++) {
 if (oldCopy[j].label != newCopy[j].label) {

 …
 }}
 return getValues(newCopy);
}}}

(2)

© 2007 Herlihy & Shavit 124

Wait-free Scan
 public int[] scan() {
 SnapValue[] oldCopy, newCopy;
 boolean[] moved = new boolean[n];
 oldCopy = collect();
 collect: while (true) {
 newCopy = collect();
 for (int j = 0; j < n; j++) {
 if (oldCopy[j].label != newCopy[j].label) {

 …
 }}
 return getValues(newCopy);
}}}

(2)

Keep track of who moved

© 2007 Herlihy & Shavit 125

Wait-free Scan
 public int[] scan() {
 SnapValue[] oldCopy, newCopy;
 boolean[] moved = new boolean[n];
 oldCopy = collect();
 collect: while (true) {
 newCopy = collect();
 for (int j = 0; j < n; j++) {
 if (oldCopy[j].label != newCopy[j].label) {

 …
 }}
 return getValues(newCopy);
}}}

(2)

Repeated double collect

© 2007 Herlihy & Shavit 126

Wait-free Scan
 public int[] scan() {
 SnapValue[] oldCopy, newCopy;
 boolean[] moved = new boolean[n];
 oldCopy = collect();
 collect: while (true) {
 newCopy = collect();
 for (int j = 0; j < n; j++) {
 if (oldCopy[j].label != newCopy[j].label) {

 …
 }}
 return getValues(newCopy);
}}}

(2)

If mismatch detected…lets
expand here…

© 2007 Herlihy & Shavit 127

Mismatch Detected
if (oldCopy[j].label != newCopy[j].label) {

 if (moved[j]) { // second move
 return newCopy[j].snap;
 } else {
 moved[j] = true;
 oldCopy = newCopy;
 continue collect;
 }}}
 return getValues(newCopy);
}}}

(2)

© 2007 Herlihy & Shavit 128

Mismatch Detected
if (oldCopy[j].label != newCopy[j].label) {

 if (moved[j]) {
 return newCopy[j].snap;
 } else {
 moved[j] = true;
 oldCopy = newCopy;
 continue collect;
 }}}
 return getValues(newCopy);
}}}

If thread moved twice,
just steal its second

snapshot

(2)

© 2007 Herlihy & Shavit 129

Mismatch Detected
if (oldCopy[j].label != newCopy[j].label) {

 if (moved[j]) { // second move
 return newCopy[j].snap;
 } else {
 moved[j] = true;
 oldCopy = newCopy;
 continue collect;
 }}}
 return getValues(newCopy);
}}}

(2)

Remember that thread
moved

© 2007 Herlihy & Shavit 130

Snapshot Summary

• We saw that we can build wait-free
atomic snapshot from atomic registers

© Herlihy and Shavit

Multiple Assignment Theorem

• Atomic registers cannot implement
multiple assignment

• Weird or what?
– Single location write/multi location read

OK
(= Atomic Snapshot)

– Multi location write/single location read
impossible

131

© Herlihy and Shavit

Proof Strategy

• If we can write to 2/3 array elements
– We can solve 2-consensus
– Impossible with atomic registers

• Therefore
– Cannot implement multiple assignment

with atomic registers

132

© Herlihy and Shavit

Proof Strategy

• Take a 3-element array
– A writes atomically to slots 0 and 1
– B writes atomically to slots 1 and 2
– Any thread can scan any set of locations

133

© Herlihy and Shavit

Double Assignment Interface

interface Assign2 {
 public void assign(int i1, int v1,
 int i2, int v2);
 public int read(int i);
}

134

© Herlihy and Shavit

Double Assignment Interface

interface Assign2 {
 public void assign(int i1, int v1,
 int i2, int v2);
 public int read(int i);
}

Atomically assign
value[i1]= v1
value[i2]= v2

135

© Herlihy and Shavit

Double Assignment Interface

interface Assign2 {
 public void assign(int i1, int v1,
 int i2, int v2);
 public int read(int i);
}

Return i-th value

136

© Herlihy and Shavit

Initially

Writes to
0 and 1

Writes to
1 and 2

A

B

137

© Herlihy and Shavit

Thread A wins if

A

B
Thread B

didn’t move

138

© Herlihy and Shavit

Thread A wins if

A

B
Thread B

moved later

139

© Herlihy and Shavit

Thread A loses if

A

B
Thread B

moved earlier

140

© Herlihy and Shavit

Multi-Consensus Code
class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

141

© Herlihy and Shavit

Multi-Consensus Code
class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }} Extends ConsensusProtocol

Decide sets j=1-i and proposes value

142

© Herlihy and Shavit

Multi-Consensus Code
class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

(4)

Three slots
initialized to

EMPTY

143

© Herlihy and Shavit

Multi-Consensus Code
class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

Assign id 0 to entries
0,1 (or id 1 to entries

1,2)

144

© Herlihy and Shavit

Multi-Consensus Code
class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

Read the register my
thread didn’t assign

145

© Herlihy and Shavit

class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

Multi-Consensus Code

Other thread didn’t
move, so I win

146

© Herlihy and Shavit

class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

Multi-Consensus Code

Other thread moved
later so I win

147

© Herlihy and Shavit

Multi-Consensus Code
class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }} OK, I win.

148

© Herlihy and Shavit

class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
 a.assign(i, i, i+1, i);
 int other = a.read((i+2) % 3);
 if (other==EMPTY||other==a.read(1))
 return proposed[i];
 else
 return proposed[j];
 }}

Multi-Consensus Code

(1)

Other thread moved
first, so I lose

149

© Herlihy and Shavit

Summary

• If a thread can assign atomically to 2
out of 3 array locations

• Then we can solve 2-consensus
• Therefore

– No wait-free multi-assignment
from read/write registers

150

© Herlihy and Shavit

Read-Modify-Write Objects

• Method call
– Returns object’s prior value x
– Replaces x with mumble(x)

151

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;

 public void synchronized
 getAndMumble() {
 int prior = this.value;
 this.value = mumble(this.value);
 return prior;
 }
}

Read-Modify-Write

152

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;

 public void synchronized
 getAndMumble() {
 int prior = this.value;
 this.value = mumble(this.value);
 return prior;
 }
}

Read-Modify-Write

Return prior value

153

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;

 public void synchronized
 getAndMumble() {
 int prior = this.value;
 this.value = mumble(this.value);
 return prior;
 }
}

Read-Modify-Write

Apply function to current value

154

© Herlihy and Shavit

RMW Everywhere!

• Most synchronization instructions
– are RMW methods

• The rest
– Can be trivially transformed into RMW

methods

155

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;

 public int synchronized read() {
 int prior = this.value;
 this.value = this.value;
 return prior;
 }

}

Example: Read

156

© Herlihy and Shavit

public abstract class RMW {
 private int value;

 public void synchronized read() {
 int prior = this.value;
 this.value = this.value;
 return prior;
 }

}

Example: Read

Apply f(v)=v, the
identity function

157

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;

 public void synchronized
 getAndSet(int v) {
 int prior = this.value;
 this.value = v;
 return prior;
 }
 …
}

Example: getAndSet

158

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;

 public void synchronized
 getAndSet(int v) {
 int prior = this.value;
 this.value = v;
 return prior;
 }
 …
}

Example: getAndSet (swap)

F(x)=v is constant function

159

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;

 public void synchronized
 getAndIncrement() {
 int prior = this.value;
 this.value = this.value + 1;
 return prior;
 }
 …
}

getAndIncrement

160

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;

 public void synchronized
 getAndIncrement() {
 int prior = this.value;
 this.value = this.value + 1;
 return prior;
 }
 …
}

getAndIncrement

F(x) = x+1

161

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;

 public void synchronized
 getAndAdd(int a) {
 int prior = this.value;
 this.value = this.value + a;
 return prior;
 }
 …
}

getAndAdd

162

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;

 public void synchronized
 getAndIncrement(int a) {
 int prior = this.value;
 this.value = this.value + a;
 return prior;
 }
 …
}

Example: getAndAdd

F(x) = x+a

163

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

164

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

If value is what was
expected, …

165

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

… replace it

166

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

Report success

167

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

Otherwise report
failure

168

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;

 public void synchronized
 getAndMumble() {
 int prior = this.value;
 this.value = mumble(this.value);
 return prior;
 }
}

Read-Modify-Write

Let’s characterize F(x)…

169

© Herlihy and Shavit

Definition

• A RMW method
– With function mumble(x)
– is non-trivial if there exists a value v
– Such that v ≠ mumble(v)

170

© Herlihy and Shavit

Par Example

• Identity(x) = x
– is trivial

• getAndIncrement(x) = x+1
– is non-trivial

171

© Herlihy and Shavit

Theorem

• Any non-trivial RMW object has
consensus number at least 2

• No wait-free implementation of RMW
registers from atomic registers

• Hardware RMW instructions not just a
convenience

172

© Herlihy and Shavit

Reminder

• Subclasses of consensus have
– propose(x) method

• which just stores x into proposed[i]
• Built-in method

– decide(object value) method
• which determines winning value
• Customized, class-specific method

173

© Herlihy and Shavit

Proof

public class RMWConsensus
 implements ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
 propose(value);
 if (r.getAndMumble() == v)
 return proposed[i];
 else
 return proposed[j];
}}

(4) 174

© Herlihy and Shavit

public class RMWConsensus
 implements ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
 propose(value);
 if (r.getAndMumble() == v)
 return proposed[i];
 else
 return proposed[j];
}}

Proof

(4)

Initialized to v

175

© Herlihy and Shavit

Proof

public class RMWConsensus
 implements ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
 propose(value);
 if (r.getAndMumble() == v)
 return proposed[i];
 else
 return proposed[j];
}}

(4)

Am I first?

176

© Herlihy and Shavit

public class RMWConsensus
 implements ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
 propose(value);
 if (r.getAndMumble() == v)
 return proposed[i];
 else
 return proposed[j];
}}

Proof

(4)

Yes, return
my input

177

© Herlihy and Shavit

public class RMWConsensus
 implements ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
 propose(value);
 if (r.getAndMumble() == v)
 return proposed[i];
 else
 return proposed[j];
}}

Proof

(4)

No, return
other’s input

178

© Herlihy and Shavit

Proof

• We have displayed
– A two-thread consensus protocol
– Using any non-trivial RMW object

179

© Herlihy and Shavit

Interfering RMW

• Let F be a set of functions such that
for all fi and fj, either

– Commute: fi(fj(v))=fj(fi(v))

– Overwrite: fi(fj(v))=fi(v)

• Claim: Any set of RMW objects that
commutes or overwrites has consensus
number exactly 2

180

© Herlihy and Shavit

Examples

• “test-and-set” getAndSet(1) f(v)=1

• “swap” getAndSet(x) f(v)=x

• “fetch-and-inc” getAndIncrement() f(v)=v+1

Overwrite fi(fj(v))=fi(v)

Overwrite fi(fj(v))=fi(v)

Commute fi(fj(v))= fj(fi(v))

181

© Herlihy and Shavit

Meanwhile Back at the Critical
State

c

0-valent 1-valent

A about to
apply fA

B about to
apply fB

182

© Herlihy and Shavit

Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fAB applies fB

0 1

C runs solo C runs solo

1-valent
183

© Herlihy and Shavit

Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fAB applies fB

0 1

C runs solo C runs solo

1-valent

These states look the same to C

Contra
dict

ion

184

© Herlihy and Shavit

Maybe the Functions Overwrite

c

0-valent

A applies fA B applies fB

A applies fA

0

1

C runs solo

C runs solo

1-valent
185

© Herlihy and Shavit

Maybe the Functions Overwrite

c

0-valent

A applies fA B applies fB

A applies fA

0

1

C runs solo

C runs solo

1-valent

These states look the same to C

Contra
dict

ion

186

© Herlihy and Shavit

Impact

• Many early machines provided these
“weak” RMW instructions
– Test-and-set (IBM 360)
– Fetch-and-add (NYU Ultracomputer)
– Swap (Original SPARCs)

• We now understand their limitations
– But why do we want consensus anyway?

187

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

(1) 188

© Herlihy and Shavit

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
 compareAndSet(int expected,
 int update) {
 int prior = this.value;
 if (this.value==expected) {
 this.value = update; return true;
 }
 return false;
 } … }

compareAndSet

(1)

replace value if its what we
expected, …

189

© Herlihy and Shavit

public class RMWConsensus
 implements ConsensusProtocol {
 private AtomicInteger r =
 new AtomicInteger(-1);
 public Object decide(object value) {
 propose(value);
 r.compareAndSet(-1,i);
 return proposed[r.get()];
 }
}

compareAndSet Has ∞
Consensus Number

(4) 190

© Herlihy and Shavit

public class RMWConsensus
 implements ConsensusProtocol {
 private AtomicInteger r =
 new AtomicInteger(-1);
 public Object decide(object value) {
 propose(value)
 r.compareAndSet(-1,i);
 return proposed[r.get()];
 }
}

compareAndSet Has ∞
Consensus Number

(4)

Initialized to -1

191

© Herlihy and Shavit

public class RMWConsensus
 implements ConsensusProtocol {
 private AtomicInteger r =
 new AtomicInteger(-1);
 public Object decide(object value) {
 propose(value);
 r.compareAndSet(-1,i);
 return proposed[r.get()];
 }
}

compareAndSet Has ∞
Consensus Number

(4)

Try to swap in my
id

192

© Herlihy and Shavit

public class RMWConsensus
 implements ConsensusProtocol {
 private AtomicInteger r =
 new AtomicInteger(-1);
 public Object decide(object value) {
 propose(value);
 r.compareAndSet(-1,i);
 return proposed[r.get()];
 }
}

compareAndSet Has ∞
Consensus Number

(4)

Decide winner’s
preference

193

© Herlihy and Shavit

The Consensus Hierarchy

1 Read/Write Registers, Snapshots…

2 getAndSet, getAndIncrement, …

∞ compareAndSet,…

.

.

.

194

© Herlihy and Shavit

Multiple Assignment

• Atomic k-assignment
• Solves consensus for 2k-2 threads
• Every even consensus number has an

object (can be extended to odd numbers)

195

© Herlihy and Shavit

Lock-Freedom

• Lock-free: in an infinite execution
infinitely often some method call
finishes (obviously, in a finite number
of steps)

• Pragmatic approach
• Implies no mutual exclusion

196

© Herlihy and Shavit

Lock-Free vs. Wait-free

• Wait-Free: each method call takes a
finite number of steps to finish

• Lock-free: in an infinite execution
infinitely often some method call
finishes

197

© Herlihy and Shavit

Lock-Freedom
• Any wait-free implementation is

lock-free.
• Lock-free is the same as wait-

free if the execution is finite.
• Old saying: “Lock-free is to

wait-free as deadlock-free is to
lockout-free.”

198

© Herlihy and Shavit

Lock-Free Implementations

• Lock-free consensus is just as
impossible

• Lock-free = Wait-free for finite
executions

• All the results we presented hold for
lock-free algorithms also.

199

© Herlihy and Shavit

There is More: Universality

• Consensus is universal
• From n-thread consensus we can build

– Wait-free/Lock-free,
– Linearizable,
– n-threaded,
– Implementation
– Of any sequentially specified object

200

