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Why is Mutual Exclusion so 
wrong?

(2) 2
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Asynchronous Interrupts

Swapped out 
back at

??? ???

(2) 3
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Heterogeneous Processors

??? ???
yawn

(1)

x86-64x86-64
286
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Fault-tolerance

??? ???

(2) 5
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Wait-Free Implementations

Definition:  An object implementation is 
wait-free if every thread completes a 
method in a finite number of steps 

No mutual exclusion 
– Thread could halt in critical section 
– Build mutual exclusion from registers
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Lock-Free Implementations

Definition:  An object implementation is 
lock-free if in an infinite execution 
infinitely often some method call 
finishes (obviously, in a finite number of 
steps) 

No difference between lock-free and 
wait-free for finite executions
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Basic Questions

• Wait-Free synchronization might be a 
good idea in principle 

• But how do you do it 
– Systematically? 
– Correctly? 
– Efficiently?

8
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Today: Focus on Wait-free

• The rest of today’s discussion will focus 
on wait-free implementations  

• But the results we present apply 
almost verbatim to lock-free ones

9
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FIFO Queue: Enqueue Method

q.enq( )

10



©  Herlihy and Shavit

FIFO Queue: Dequeue Method

q.deq()/

11
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Two-Thread Wait-Free Queue
public class LockFreeQueue {
 int head = 0, tail = 0; 
 Item[QSIZE] items;
 public void enq(Item x) throws… {
  if (tail-head == QSIZE) { throw…};
  items[tail % QSIZE] = x; tail++;
  }
 public Item deq() {
  if (tail-head == 0) { throw…}
  Item item = items[head % QSIZE];
  head++; return item;
}}

12
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Two-Thread Wait-Free Queue
public class LockFreeQueue {
 int head = 0, tail = 0; 
 Item[QSIZE] items;
 public void enq(Item x) throws… {
  if (tail-head == QSIZE) { throw…};
  items[tail % QSIZE] = x; tail++;
  }
 public Item deq() {
  if (tail-head == 0) { throw… }
  Item item = items[head % QSIZE];
  head++; return item;
}}

Put object in queue

13
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Two-Thread Wait-Free Queue
public class LockFreeQueue {
 int head = 0, tail = 0; 
 Item[QSIZE] items;
 public void enq(Item x) throws… {
  if (tail-head == QSIZE) { throw…};
  items[tail % QSIZE] = x; tail++;
  }
 public Item deq() {
  if (tail-head == 0) { throw…}
  Item item = items[head % QSIZE];
  head++; return item;
}}

Increment tail 
counter

14
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What About Multiple Dequeuers?

15
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Grand Challenge

• Implement a FIFO queue 
– Wait-free 
– Linearizable 
– From atomic read-write registers 
– Multiple dequeuers

Only new 
aspect

(1) 16
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Consensus

• While you are thinking about the grand 
challenge… 

• We will give you another puzzle 
– Consensus 
– Will be important …

17
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Consensus: Each Thread has a 
Private Input

32 19

21
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They Communicate

19
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They Agree on One Thread’s 
Input

19 19

19
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Formally: Consensus 

Consistent: all threads decide the same 
value 

Valid: the common decision value is some 
thread's input 

Wait-free: each thread decides after a 
finite number of steps

21
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No Wait-Free Consensus using 
Registers

??? ???

22
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Formally

• Theorem [adapted from Fischer, Lynch, 
Paterson]: There is no wait-free 
implementation of n-thread consensus, 
n>1, from read-write registers even if 
only one thread can crash 

• Implication: asynchronous computability 
fundamentally different from Turing 
computability

23
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Proof Strategy 

• Assume otherwise 
• Reason about the properties of any 

such protocol 
• Derive a contradiction 
• Quod Erat Demonstrandum 
• Suffices to prove for binary consensus 

and n=2

24
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Wait-Free Computation

• Either A or B “moves” 
• Moving means 

– Register read 
– Register write

A moves B moves

25
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The Two-Move Tree
Initial 
state

Final 
states

(2) 26
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Decision Values

1 0 0 1 1 1
27
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Bivalent: Both Possible

1 1 1

bivalent

1 0 0
28
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Univalent: Single Value Possible

1 1 1

univalent

1 0 0
29
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x-valent: x Only Possible 
Decision

0 1 1 1

1-valent

01
30
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Claim

• Some initial state is bivalent 
• Outcome depends on 

– Chance 
– Behavior of the scheduler 

• Lets prove this claim

31
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Both Inputs 0

Univalent: all executions must decide 0

00

(2) 32
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Both Inputs 0

Including this solo execution by A

(1)

0

33
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Both Inputs 1

All executions must decide 1

11

(2) 34
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Both Inputs 1

Including this solo execution by B

(1)

1
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What if inputs differ?

(2)

10

By Way of contradiction: If univalent 
all executions must decide on same value 

36
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The Possible Executions

0 1

(2)

Include the solo execution by A 
that decides 0

37
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The Possible Executions

0 1

(2)

Also include the solo execution by B 
which we know decides 1

38
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Possible Executions Include

• Solo execution by A 
must decide 0

• Solo execution by B 
must decide 1

0 1

How univalent is 
that? 
(QED)

39
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Summary So Far

• Wait-free computation is a tree 
• Bivalent system states 

– Outcome not fixed 

• Univalent states 
– Outcome is fixed 
– May not be “known” yet 

• 1-Valent and 0-Valent states

40
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0-valent

Critical States

1-valent

critical

(3) 41
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From a Critical State

c

If A goes first, protocol 
decides 0

If B goes first, protocol 
decides 1

0-valent 1-valent

42
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Reaching Critical State

c
0-valent 1-valent

CB

initially bivalent

CA
univalentbivalent

CBunivalent bivalent

univalentCA

univalent

bivalent

43
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Critical States

• Starting from a bivalent initial state 
• The protocol can reach a critical state 

– Otherwise we could stay bivalent forever 
– And the protocol is not wait-free

44
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Model Dependency

• So far, memory-independent! 
• True for 

– Registers 
– Message-passing 
– Carrier pigeons 
– Any kind of asynchronous computation

45
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What are the Threads Doing?

• Reads and/or writes 
• To same/different registers

46



Completing the Proof

• Lets look at executions that: 
– Start from a critical state 
– Threads cause state to become univalent 

by reading or writing to same/different 
registers 

– End within a finite number of steps 
deciding either 0 or 1  

• Show this leads to a contradiction

47
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Possible Interactions

x.read() y.read() x.write() y.write()

x.read() ? ? ? ?

y.read() ? ? ? ?

x.write() ? ? ? ?

y.write() ? ? ? ?

A reads x
A reads y

48
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Some Thread Reads
A runs solo, 
eventually 
decides 0

B reads x

1

0

A runs solo, 
eventually  
decides 1

c

States look the 
same to A

Contra
dict

ion

49
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Possible Interactions

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no ? ?

y.write() no no ? ?

50
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Writing Distinct Registers

A writes y B writes x

10

c

The song is the same

A writes yB writes x

Contra
dict

ion

51
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Possible Interactions

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no ? no

y.write() no no no ?

52
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Writing Same Registers

States look the 
same to A

A writes x B writes x

1
A runs solo, 
eventually 
decides 1

c

0

A runs solo, 
eventually 
decides 0 A writes x

Contra
dict

ion

53
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That’s All, Folks!

x.read() y.read() x.write() y.write()

x.read() no no no no

y.read() no no no no

x.write() no no no no

y.write() no no no noQED

54
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Recap: Atomic Registers Can’t Do 
Consensus

• If protocol exists 
– It has a bivalent initial state 
– Leading to a critical state 

• What’s up with the critical state? 
– Case analysis for each pair of methods 
– As we showed, all lead to a contradiction

55
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What Does Consensus have to do 
with Concurrent Objects?

56
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Consensus Object

public interface Consensus {
 Object decide(Object value);
}

(4) 57
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Concurrent Consensus Object

• We consider only one time objects: 
each thread can execute a method only 
once 

• Linearizable to sequential consensus 
object in which  
– the thread who’s input was decided on 

completed its method first

58
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Java Jargon Watch

• Define Consensus protocol as an 
abstract class 

• We implement some methods 
• Leave you to do the rest …

59
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Generic Consensus Protocol

abstract class ConsensusProtocol 
implements Consensus {
 protected Object[] proposed =
  new Object[N];

 private void propose(Object value) {
  proposed[ThreadID.get()] = value;
 }

 abstract public Object 
          decide(Object value);
 }}

60
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abstract class ConsensusProtocol 
implements Consensus {
 protected Object[] proposed =
  new Object[N];

 private void propose(Object value) {
  proposed[ThreadID.get()] = value;
 }

 abstract public Object 
                 decide(object value);
 }}

Generic Consensus Protocol

Each thread’s 
proposed value

61
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abstract class ConsensusProtocol 
implements Consensus {
 protected Object[] proposed =
  new Object[N];

 private void propose(Object value) {
  proposed[ThreadID.get()] = value;
 }

 abstract public Object 
                 decide(object value);
 }}

Generic Consensus Protocol

Propose a value

62
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abstract class ConsensusProtocol 
implements Consensus {
 protected Object[] proposed =
  new Object[N];

 private void propose(Object value) {
  proposed[ThreadID.get()] = value;
 }

 abstract public Object 
          decide(object value);
 }}

Generic Consensus Protocol

Decide a value: abstract method means 
subclass does the heavy lifting (real 

work)

63



Can FIFO Queue Implement 
Consensus?

64
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FIFO Consensus

  
propose array

FIFO Queue 
with red and 
black balls

8

Coveted red ball Dreaded black ball

65
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Protocol: Write Value to Array

0 1
0

66
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0

Protocol: Take Next Item from 
Queue

0 1
8

67
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0 1

Protocol: Take Next Item from 
Queue

I got the coveted 
red ball, so I will 
decide my value

I got the dreaded 
black ball, so I will 
decide the other’s 

value from the array
8

68
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public class QueueConsensus
  extends ConsensusProtocol {
 private Queue queue;
 public QueueConsensus() {
  queue = new Queue();
  queue.enq(Ball.RED);
  queue.enq(Ball.BLACK);
 }
 …
}

Consensus Using FIFO Queue

69
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public class QueueConsensus
  extends ConsensusProtocol {
 private Queue queue;
 public QueueConsensus() {
  queue = new Queue();
  queue.enq(Ball.RED);
  queue.enq(Ball.BLACK);
 }
 …
}

Initialize Queue

8

70
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public class QueueConsensus
  extends ConsensusProtocol {
 private Queue queue;
 …
 public decide(object value) {
  propose(value);
  Ball ball = this.queue.deq();
  if (ball == Ball.RED)
   return proposed[i];
  else
   return proposed[1-i];
 }
}

Who Won?

71
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public class QueueConsensus
  extends ConsensusProtocol {
 private Queue queue;
 …
 public decide(object value) {
  propose(value);
  Ball ball = this.queue.deq();
  if (ball == Ball.RED)
   return proposed[i];
  else
   return proposed[1-ij];
 }
}

Who Won?

Race to dequeue first 
queue item

72



©  Herlihy and Shavit

public class QueueConsensus
  extends ConsensusProtocol {
 private Queue queue;
 …
 public decide(object value) {
  propose(value);
  Ball ball = this.queue.deq();
  if (ball == Ball.RED)
   return proposed[i];
  else
   return proposed[1-i];
 }
}

Who Won?

i = ThreadID.get(); 
I win if I was first

73
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public class QueueConsensus
  extends ConsensusProtocol {
 private Queue queue;
 …
 public decide(object value) {
  propose(value);
  Ball ball = this.queue.deq();
  if (ball == Ball.RED)
   return proposed[i];
  else
   return proposed[1-i];
 }
}

Who Won?

Other thread wins if I 
was second

74
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Why does this Work?

• If one thread gets the red ball 
• Then the other gets the black ball 
• Winner decides her own value 
• Loser can find winner’s value in array 

– Because threads write to array 
– Before dequeueing from queue

75
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Theorem

• We can solve 2-thread consensus using 
only 
– A two-dequeuer queue, and 
– Some atomic registers

76



©  Herlihy and Shavit

Implications

• Given 
– A consensus protocol from queue and registers 

• Assume there exists 
– A queue implementation from atomic registers 

• Substitution yields: 
– A wait-free consensus protocol from atomic 

registers

contradiction

77
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Corollary

• It is impossible to implement  
– a two-dequeuer wait-free FIFO queue 
– from read/write memory.

78
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Consensus Numbers

• An object X has consensus number n 
– If it can be used to solve n-thread 

consensus 
• Taking any number of instances of X  
• together with atomic read/write registers 
• and implement n-thread consensus 

– But not (n+1)-thread consensus

79
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Consensus Numbers

• Theorem 
– Atomic read/write registers have 

consensus number 1 

• Theorem 
– Multi-dequeuer FIFO queues have 

consensus number at least 2

80
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Consensus Numbers Measure 
Synchronization Power

• Theorem 
– If  you can implement X from Y 
– And X has consensus number c 
– Then Y has consensus number at least c

81
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Synchronization Speed Limit

• Conversely 
– If X has consensus number c 
– And Y has consensus number d < c 
– Then there is no way to construct a wait-

free implementation of X by Y 

• This theorem will be very useful 
– Unforeseen practical implications!

Theoretical 

Caveat: Certain 

weird exceptions 
exist

82



Homework

• What is the consensus number of a 
wait-free FIFO queue with methods: 
– enq(o): enqueue object o 
– deq(): dequeue first object 
– peek(): get a copy of first object

83
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New Grand Challenge

• Consider: 
– Write multiple array elements atomically 
– Scan any array elements 

• Call this problem multiple assignment

84
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Multiple Assignment Theorem

• Atomic registers cannot implement 
multiple assignment 

• Weird or what? 
– Single location write/multiple location 

read OK (= Atomic Snapshot) 
– Multi location write/single location read 

impossible

85
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Atomic Snapshot

update
scan
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Atomic Snapshot

• Array of MRSW atomic registers 
• Take instantaneous snapshot of all 
• Generalizes to MRMW registers …
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Snapshot Interface

public interface Snapshot {
  public int update(int v);
  public int[] scan();
}
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Snapshot Interface

public interface Snapshot {
  public int update(int v);
  public int[] scan();
}

Thread i writes v to its register
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Snapshot Interface

public interface Snapshot {
  public int update(int v);
  public int[] scan();
}

Instantaneous snapshot of all theads’ 
registers
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Atomic Snapshot

• Collect 
– Read values one at a time 

• Problem 
– Incompatible concurrent collects 
– Result not linearizable



Example: Atomic Snapshot MRMW

92

read

update

A: 1, 3, 3

1 2

1 2 3

1 2 3

i

i+1

i+2

thread

4

B: 2, 2, 2
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Clean Collects

• Clean Collect 
– Collect during which nothing changed 
– Can we make it happen? 
– Can we detect it?
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Simple Snapshot

• Put increasing labels on each entry 
• Collect twice 
• If both agree, 

– We’re done 

• Otherwise, 
– Try again

1

22
1

7

13

18
12

=

Collect2Collect1

1

22
1

7

13

18
12
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Simple Snapshot: Update
public class SimpleSnapshot implements Snapshot {
  private AtomicMRSWRegister[] register;

  public void update(int value) {
    int i = Thread.myIndex();

    LabeledValue oldValue = register[i].read();

    LabeledValue newValue =
     new LabeledValue(oldValue.label+1, value);
    register[i].write(newValue);
  }

(1)
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Simple Snapshot: Update
public class SimpleSnapshot implements Snapshot {
  private AtomicMRSWRegister[] register;

  public void update(int value) {
    int i = Thread.myIndex();
    LabeledValue oldValue = register[i].read();
    LabeledValue newValue =
     new LabeledValue(oldValue.label+1, value);
    register[i].write(newValue);
  }

(1)

One single-writer register per thread
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Simple Snapshot: Update
public class SimpleSnapshot implements Snapshot {
  private AtomicMRSWRegister[] register;

  public void update(int value) {
    int i = Thread.myIndex();
    LabeledValue oldValue = register[i].read();
    LabeledValue newValue =
     new LabeledValue(oldValue.label+1, value);
    register[i].write(newValue);
  }

(1)

Write each time with higher label
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Simple Snapshot: Collect
private LabeledValue[] collect() {
 LabeledValue[] copy =
  new LabeledValue[n];
 for (int j = 0; j < n; j++)
  copy[j] = this.register[j].read();
 return copy;
}

(1)
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Simple Snapshot
private LabeledValue[] collect() {
 LabeledValue[] copy =
  new LabeledValue[n];
 for (int j = 0; j < n; j++)
  copy[j] = this.register[j].read();
 return copy;
}

(1)

Just read each register into array



© 2007 Herlihy & Shavit 100

Simple Snapshot: Scan
public int[] scan() { 
  LabeledValue[] oldCopy, newCopy; 
  oldCopy = collect(); 
  collect: while (true) { 
    newCopy = collect();  
    if (!equals(oldCopy, newCopy)) { 
      oldCopy = newCopy; 
      continue collect; 
    } 
    return getValues(newCopy); 
  } 
}

(1)
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Simple Snapshot: Scan
public int[] scan() {
  LabeledValue[] oldCopy, newCopy;
  oldCopy = collect();
  collect: while (true) {
    newCopy = collect(); 
    if (!equals(oldCopy, newCopy)) {
     oldCopy = newCopy;
     continue collect;
  }

    return getValues(newCopy);
  }
}

(1)

Collect once
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Simple Snapshot: Scan
public int[] scan() {
  LabeledValue[] oldCopy, newCopy;
  oldCopy = collect();
  collect: while (true) {
    newCopy = collect(); 
    if (!equals(oldCopy, newCopy)) {
     oldCopy = newCopy;
     continue collect;
  }

    return getValues(newCopy);
  }
}

(1)

Collect once

Collect twice
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Simple Snapshot: Scan
public int[] scan() {
  LabeledValue[] oldCopy, newCopy;
  oldCopy = collect();
  collect: while (true) {
    newCopy = collect(); 
    if (!equals(oldCopy, newCopy)) {
     oldCopy = newCopy;
     continue collect;
  }

    return getValues(newCopy);
  }
}

(1)

Collect once

Collect twice

On mismatch, 
try again
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Simple Snapshot: Scan
public int[] scan() {
  LabeledValue[] oldCopy, newCopy;
  oldCopy = collect();
  collect: while (true) {
    newCopy = collect(); 
    if (!equals(oldCopy, newCopy)) {
     oldCopy = newCopy; 

      continue collect;
    }
    return getValues(newCopy);
  }
}

(1)

Collect once

Collect twice

On match, return 
values



Example

105

read

update

1 2

1 2 3

1 2 3

i

i+1

i+2

thread

B: 2, 2, 2

3

B: 2, 2, 2
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Simple Snapshot

• Linearizable 
• Update is wait-free 

– No unbounded loops 

• But Scan can starve 
– If interrupted by concurrent update
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Wait-Free Snapshot

• Add a scan before every update 
• Write resulting snapshot together 

with update value 
• If scan is continuously interrupted by 

updates, scan can take the update’s 
snapshot 
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Wait-free Snapshot
If A’s scan observes that B moved 
twice, then B completed an update 
while A’s scan was in progress

time

Update

B

≠ ≠
26
24
12

Collect

26
25
12

Collect

26
26
12

Collect
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Wait-free Snapshot

time

≠ ≠
26
24
12

Collect

26
24

12

Collect

26
24
12

Collect

Update

A

B
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Wait-free Snapshot

time

≠ ≠
26
24
12

Collect

26
24
12

Collect

26
24

12

Collect

A

B
ScanWrite

Update
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Wait-free Snapshot

time

≠ ≠
26
24
12

Collect

26
25
12

Collect

26
26
12

Collect

A

B Scan Write

Update

Scan Write

B’s 1st update must have written during 1st collect

So A can steal  
result of B’s scan
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Wait-free Snapshot

time

≠ ≠
26
24
12

Collect

26
24
12

Collect

26
24
12

Collect

A

B Scan WriteScan Write

But no guarantee that scan 
of B’s 1st update can be used… 
Why?
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Once is not Enough

time

≠
26
25
12

26
26
12

Collect

Update

A

B Scan Write

Why can’t A steal result of B’s scan
Because another update  
might have interfered 
before the scan

Update
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Someone Must Move Twice

time

Update

B

≠ ≠24
12

Collect

26
24
12

Collect

26
24
12

Collect

If we collect n times…some thread  
Must move twice (Pigeon hole) 
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Scan is Wait-free 

scan

update

So some thread must 
have had clean collect

scan

update

scan

At  
most  
n-1  

depth
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Wait-Free Snapshot Label

public class SnapValue {
 public int   label; 
 public int   value; 
 public int[] snap; 
} 

(2)
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Wait-Free Snapshot Label

public class SnapValue {
 public int   label; 
 public int   value; 
 public int[] snap; 
} 

(2)

Counter incremented 
with each snapshot
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Wait-Free Snapshot Label

public class SnapValue {
 public int   label; 
 public int   value; 
 public int[] snap; 
} 

(2)

Actual value
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Wait-Free Snapshot Label

public class SnapValue {
 public int   label; 
 public int   value; 
 public int[] snap; 
} 

(2)

most recent snapshot
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Wait-free Update
 public void update(int value) {
  int i = Thread.myIndex();
  int[] snap = this.scan();
  SnapValue oldValue = r[i].read();
  SnapValue newValue =
   new SnapValue(oldValue.label+1,
                 value, snap);
  r[i].write(newValue);
  }

(2)



© 2007 Herlihy & Shavit 121

Wait-free Scan
 public void update(int value) {
  int i = Thread.myIndex();
  int[] snap = this.scan();
  SnapValue oldValue = r[i].read();
  SnapValue newValue =
   new SnapValue(oldValue.label+1,
                 value, snap);
  r[i].write(newValue);
  }

(2)

Take scan
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Wait-free Scan
 public void update(int value) {
  int i = Thread.myIndex();
  int[] snap = this.scan();
  SnapValue oldValue = r[i].read();
  SnapValue newValue =
   new SnapValue(oldValue.label+1,
                 value, snap);
  r[i].write(newValue);
  }

(2)

Take scan

Label value with scan
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Wait-free Scan
 public int[] scan() {
  SnapValue[] oldCopy, newCopy;
  boolean[] moved = new boolean[n];
  oldCopy = collect();
  collect: while (true) {
  newCopy = collect();
  for (int j = 0; j < n; j++) {
  if (oldCopy[j].label != newCopy[j].label) {

      …
  }}
  return getValues(newCopy);
}}}

(2)
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Wait-free Scan
 public int[] scan() {
  SnapValue[] oldCopy, newCopy;
  boolean[] moved = new boolean[n];
  oldCopy = collect();
  collect: while (true) {
  newCopy = collect();
  for (int j = 0; j < n; j++) {
  if (oldCopy[j].label != newCopy[j].label) {

      …
  }}
  return getValues(newCopy);
}}}

(2)

Keep track of who moved
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Wait-free Scan
 public int[] scan() {
  SnapValue[] oldCopy, newCopy;
  boolean[] moved = new boolean[n];
  oldCopy = collect();
  collect: while (true) {
  newCopy = collect();
  for (int j = 0; j < n; j++) {
  if (oldCopy[j].label != newCopy[j].label) {

      …
  }}
  return getValues(newCopy);
}}}

(2)

Repeated double collect
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Wait-free Scan
 public int[] scan() {
  SnapValue[] oldCopy, newCopy;
  boolean[] moved = new boolean[n];
  oldCopy = collect();
  collect: while (true) {
  newCopy = collect();
  for (int j = 0; j < n; j++) {
  if (oldCopy[j].label != newCopy[j].label) {

      …
  }}
  return getValues(newCopy);
}}}

(2)

If mismatch detected…lets 
expand here…
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Mismatch Detected
if (oldCopy[j].label != newCopy[j].label) {

   if (moved[j]) { // second move
    return newCopy[j].snap;
   } else {
    moved[j] = true;
    oldCopy = newCopy;
    continue collect;
  }}}
  return getValues(newCopy);
}}}

(2)
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Mismatch Detected
if (oldCopy[j].label != newCopy[j].label) {

   if (moved[j]) {
    return newCopy[j].snap;
   } else {
    moved[j] = true;
    oldCopy = newCopy;
    continue collect;
  }}}
  return getValues(newCopy);
}}}

If thread moved twice, 
just steal its second 

snapshot

(2)
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Mismatch Detected
if (oldCopy[j].label != newCopy[j].label) {

   if (moved[j]) { // second move
    return newCopy[j].snap;
   } else {
    moved[j] = true;
    oldCopy = newCopy;
    continue collect;
  }}}
  return getValues(newCopy);
}}}

(2)

Remember that thread 
moved
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Snapshot Summary

• We saw that we can build wait-free 
atomic snapshot from atomic registers  



©  Herlihy and Shavit

Multiple Assignment Theorem

• Atomic registers cannot implement 
multiple assignment 

• Weird or what? 
– Single location write/multi location read 

OK 
(= Atomic Snapshot) 

– Multi location write/single location read 
impossible
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Proof Strategy

• If we can write to 2/3 array elements 
– We can solve 2-consensus 
– Impossible with atomic registers 

• Therefore 
– Cannot implement multiple assignment 

with atomic registers
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Proof Strategy

• Take a 3-element array 
– A writes atomically to slots 0 and 1 
– B writes atomically to slots 1 and 2 
– Any thread can scan any set of locations
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Double Assignment Interface

interface Assign2 {
 public void assign(int i1, int v1,
                    int i2, int v2);
 public int read(int i);
}   
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Double Assignment Interface

interface Assign2 {
 public void assign(int i1, int v1,
                    int i2, int v2);
 public int read(int i);
}   

Atomically assign  
value[i1]= v1
value[i2]= v2
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Double Assignment Interface

interface Assign2 {
 public void assign(int i1, int v1,
                    int i2, int v2);
 public int read(int i);
}   

Return i-th value
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Initially

Writes to 
0 and 1

Writes to 
1 and 2

A

B

137
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Thread A wins if

A

B
Thread B 

didn’t move
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Thread A wins if

A

B
Thread B 

moved later
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Thread A loses if

A

B
Thread B 

moved earlier
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Multi-Consensus Code
class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
  a.assign(i, i, i+1, i); 
  int other = a.read((i+2) % 3);
  if (other==EMPTY||other==a.read(1))
   return proposed[i]; 
  else
   return proposed[j];       
  }}
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Multi-Consensus Code
class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
  a.assign(i, i, i+1, i); 
  int other = a.read((i+2) % 3);
  if (other==EMPTY||other==a.read(1))
   return proposed[i]; 
  else
   return proposed[j];       
  }} Extends ConsensusProtocol  

Decide sets j=1-i and proposes value
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Multi-Consensus Code
class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
  a.assign(i, i, i+1, i);
  int other = a.read((i+2) % 3);
  if (other==EMPTY||other==a.read(1))
   return proposed[i]; 
  else
   return proposed[j];       
  }}

(4)

Three slots 
initialized to 

EMPTY
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Multi-Consensus Code
class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
  a.assign(i, i, i+1, i);
  int other = a.read((i+2) % 3);
  if (other==EMPTY||other==a.read(1))
   return proposed[i]; 
  else
   return proposed[j];       
  }}

Assign id 0 to entries 
0,1 (or id 1 to entries 

1,2)
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Multi-Consensus Code
class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
  a.assign(i, i, i+1, i);
  int other = a.read((i+2) % 3);
  if (other==EMPTY||other==a.read(1))
   return proposed[i]; 
  else
   return proposed[j];       
  }}

Read the register my 
thread didn’t assign
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class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
  a.assign(i, i, i+1, i);
  int other = a.read((i+2) % 3);
  if (other==EMPTY||other==a.read(1))
   return proposed[i]; 
  else
   return proposed[j];       
  }}

Multi-Consensus Code

Other thread didn’t 
move, so I win
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class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
  a.assign(i, i, i+1, i);
  int other = a.read((i+2) % 3);
  if (other==EMPTY||other==a.read(1))
   return proposed[i]; 
  else
   return proposed[j];       
  }}

Multi-Consensus Code

Other thread moved 
later so I win
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Multi-Consensus Code
class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
  a.assign(i, i, i+1, i);
  int other = a.read((i+2) % 3);
  if (other==EMPTY||other==a.read(1))
   return proposed[i]; 
  else
   return proposed[j];       
  }} OK, I win.
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class MultiConsensus extends Consensus{
 Assign2 a = new Assign2(3, EMPTY);
 public Object decide(object value) {
  a.assign(i, i, i+1, i);
  int other = a.read((i+2) % 3);
  if (other==EMPTY||other==a.read(1))
   return proposed[i]; 
  else
   return proposed[j];       
  }}

Multi-Consensus Code

(1)

Other thread moved 
first, so I lose
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Summary

• If a thread can assign atomically to 2 
out of 3 array locations 

• Then we can solve 2-consensus 
• Therefore 

– No wait-free multi-assignment 
from read/write registers
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Read-Modify-Write Objects

• Method call 
– Returns object’s prior value x 
– Replaces x with mumble(x)
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public abstract class RMWRegister {
 private int value;

 public void synchronized   
  getAndMumble() {
    int prior  = this.value;
    this.value = mumble(this.value);
    return prior;
  }
}

Read-Modify-Write
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public abstract class RMWRegister {
 private int value;

 public void synchronized   
  getAndMumble() {
    int prior  = this.value;
    this.value = mumble(this.value);
    return prior;
  }
}

Read-Modify-Write

Return prior value
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public abstract class RMWRegister {
 private int value;

 public void synchronized   
  getAndMumble() {
    int prior  = this.value;
    this.value = mumble(this.value);
    return prior;
  }
}

Read-Modify-Write

Apply function to current value
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RMW Everywhere!

• Most synchronization instructions 
– are RMW methods 

• The rest 
– Can be trivially transformed into RMW 

methods
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public abstract class RMWRegister {
  private int value;

  public int synchronized read() {
    int prior  = this.value;
    this.value = this.value;
    return prior;
  }

}

Example: Read
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public abstract class RMW {
  private int value;

  public void synchronized read() {
    int prior  = this.value;
    this.value = this.value;
    return prior;
  }

}

Example: Read

Apply f(v)=v, the 
identity function
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public abstract class RMWRegister {
 private int value;

 public void synchronized
   getAndSet(int v) {
  int prior  = this.value;
  this.value = v;
  return prior;
 }
 …
}

Example: getAndSet
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public abstract class RMWRegister {
 private int value;

 public void synchronized
   getAndSet(int v) {
  int prior  = this.value;
  this.value = v;
  return prior;
 }
 …
}

Example: getAndSet (swap)

F(x)=v is constant function
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public abstract class RMWRegister {
 private int value;

 public void synchronized
   getAndIncrement() {
  int prior  = this.value;
  this.value = this.value + 1;
  return prior;
 }
 …
}

getAndIncrement
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public abstract class RMWRegister {
 private int value;

 public void synchronized
   getAndIncrement() {
  int prior  = this.value;
  this.value = this.value + 1;
  return prior;
 }
 …
}

getAndIncrement

F(x) = x+1
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public abstract class RMWRegister {
 private int value;

 public void synchronized
   getAndAdd(int a) {
  int prior  = this.value;
  this.value = this.value + a;
  return prior;
 }
 …
}

getAndAdd
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public abstract class RMWRegister {
 private int value;

 public void synchronized
   getAndIncrement(int a) {
  int prior  = this.value;
  this.value = this.value + a;
  return prior;
 }
 …
}

Example: getAndAdd

F(x) = x+a
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public abstract class RMWRegister {
 private int value;
 public boolean synchronized
   compareAndSet(int expected, 
                 int update) {
  int prior = this.value;
  if (this.value==expected) {
   this.value = update; return true;
  }
  return false;
  } … }

compareAndSet
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public abstract class RMWRegister {
 private int value;
 public boolean synchronized
   compareAndSet(int expected, 
                 int update) {
 int prior = this.value;
 if (this.value==expected) {
  this.value = update; return true;
  }
 return false;
 } … }

compareAndSet

If value is what was 
expected, …
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public abstract class RMWRegister {
 private int value;
 public boolean synchronized
   compareAndSet(int expected, 
                 int update) {
 int prior = this.value;
 if (this.value==expected) {
  this.value = update; return true;
  }
 return false;
 } … }

compareAndSet

… replace it
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public abstract class RMWRegister {
 private int value;
 public boolean synchronized
   compareAndSet(int expected, 
                 int update) {
 int prior = this.value;
 if (this.value==expected) {
  this.value = update; return true;
  }
 return false;
 } … }

compareAndSet

Report success
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public abstract class RMWRegister {
 private int value;
 public boolean synchronized
   compareAndSet(int expected, 
                 int update) {
 int prior = this.value;
 if (this.value==expected) {
  this.value = update; return true;
  }
 return false;
 } … }

compareAndSet

Otherwise report 
failure
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public abstract class RMWRegister {
 private int value;

 public void synchronized   
  getAndMumble() {
    int prior  = this.value;
    this.value = mumble(this.value);
    return prior;
  }
}

Read-Modify-Write

Let’s characterize F(x)…
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Definition

• A RMW method 
– With function mumble(x) 
–  is non-trivial if there exists a value v  
– Such that v ≠ mumble(v)
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Par Example

• Identity(x) = x
–  is trivial  

• getAndIncrement(x) = x+1
– is non-trivial 

171



©  Herlihy and Shavit

Theorem

• Any non-trivial RMW object has 
consensus number at least 2 

• No wait-free implementation of RMW 
registers from atomic registers 

• Hardware RMW instructions not just a 
convenience
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Reminder

• Subclasses of consensus have 
– propose(x) method 

• which just stores x into proposed[i]
• Built-in method 

– decide(object value) method 
• which determines winning value 
• Customized, class-specific method
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Proof

public class RMWConsensus
     implements ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
  propose(value);
  if (r.getAndMumble() == v)
   return proposed[i];
  else
   return proposed[j];    
}}

(4) 174
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public class RMWConsensus
     implements ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
  propose(value);
  if (r.getAndMumble() == v)
   return proposed[i];
  else
   return proposed[j];    
}}

Proof

(4)

Initialized to v
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Proof

public class RMWConsensus
     implements ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
  propose(value);
  if (r.getAndMumble() == v)
   return proposed[i];
  else
   return proposed[j];    
}}

(4)

Am I first?
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public class RMWConsensus
     implements ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
  propose(value);
  if (r.getAndMumble() == v)
   return proposed[i];
  else
   return proposed[j];    
}}

Proof

(4)

Yes, return 
my input
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public class RMWConsensus
     implements ConsensusProtocol {
 private RMWRegister r = v;
 public Object decide(object value) {
  propose(value);
  if (r.getAndMumble() == v)
   return proposed[i];
  else
   return proposed[j];    
}}

Proof

(4)

No, return 
other’s input
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Proof

• We have displayed 
– A two-thread consensus protocol 
– Using any non-trivial RMW object
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Interfering RMW

• Let F be a set of functions such that 
for all fi and fj, either 

– Commute: fi(fj(v))=fj(fi(v)) 

– Overwrite: fi(fj(v))=fi(v) 

• Claim: Any set of RMW objects that 
commutes or overwrites has consensus 
number exactly 2
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Examples

• “test-and-set” getAndSet(1) f(v)=1 

• “swap” getAndSet(x)  f(v)=x 

• “fetch-and-inc” getAndIncrement() f(v)=v+1

Overwrite fi(fj(v))=fi(v)

Overwrite fi(fj(v))=fi(v)

Commute fi(fj(v))= fj(fi(v))
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Meanwhile Back at the Critical 
State

c

0-valent 1-valent

A about to 
apply fA

B about to 
apply fB
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Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fAB applies fB

0 1

C runs solo C runs solo

1-valent
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Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fAB applies fB

0 1

C runs solo C runs solo

1-valent

These states look the same to C

Contra
dict

ion
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Maybe the Functions Overwrite

c

0-valent

A applies fA B applies fB

A applies fA

0

1

C runs solo

C runs solo

1-valent
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Maybe the Functions Overwrite

c

0-valent

A applies fA B applies fB

A applies fA

0

1

C runs solo

C runs solo

1-valent

These states look the same to C

Contra
dict

ion
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Impact

• Many early machines provided these 
“weak” RMW instructions 
– Test-and-set (IBM 360) 
– Fetch-and-add (NYU Ultracomputer) 
– Swap (Original SPARCs) 

• We now understand their limitations 
– But why do we want consensus anyway?

187



©  Herlihy and Shavit

public abstract class RMWRegister {
 private int value;
 public boolean synchronized
   compareAndSet(int expected, 
                 int update) {
  int prior = this.value;
  if (this.value==expected) {
   this.value = update; return true;
  }
  return false;
  } … }

compareAndSet

(1) 188
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public abstract class RMWRegister {
 private int value;
 public boolean synchronized
   compareAndSet(int expected, 
                 int update) {
 int prior = this.value;
 if (this.value==expected) {
  this.value = update; return true;
  }
 return false;
 } … }

compareAndSet

(1)

replace value if its what we 
expected, …
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public class RMWConsensus
     implements ConsensusProtocol {
 private AtomicInteger r =
   new AtomicInteger(-1);
 public Object decide(object value) {
  propose(value);
  r.compareAndSet(-1,i);
  return proposed[r.get()];    
 }
}

compareAndSet Has ∞ 
Consensus Number

(4) 190
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public class RMWConsensus
     implements ConsensusProtocol {
 private AtomicInteger r =
   new AtomicInteger(-1);
 public Object decide(object value) {
  propose(value)
  r.compareAndSet(-1,i);
  return proposed[r.get()];    
 }
}

compareAndSet Has ∞ 
Consensus Number

(4)

Initialized to -1
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public class RMWConsensus
     implements ConsensusProtocol {
 private AtomicInteger r =
   new AtomicInteger(-1);
 public Object decide(object value) {
  propose(value);
  r.compareAndSet(-1,i);
  return proposed[r.get()];    
 }
}

compareAndSet Has ∞ 
Consensus Number

(4)

Try to swap in my 
id
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public class RMWConsensus
     implements ConsensusProtocol {
 private AtomicInteger r =
   new AtomicInteger(-1);
 public Object decide(object value) {
  propose(value);
  r.compareAndSet(-1,i);
  return proposed[r.get()];    
 }
}

compareAndSet Has ∞ 
Consensus Number

(4)

Decide winner’s 
preference

193



©  Herlihy and Shavit

The Consensus Hierarchy

1 Read/Write Registers, Snapshots…

2 getAndSet, getAndIncrement, …

∞ compareAndSet,…

. 

. 

.
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Multiple Assignment

• Atomic k-assignment 
• Solves consensus for 2k-2 threads 
• Every even consensus number has an 

object (can be extended to odd numbers)
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Lock-Freedom

• Lock-free: in an infinite execution 
infinitely often some method call 
finishes (obviously, in a finite number 
of steps) 

• Pragmatic approach 
• Implies no mutual exclusion
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Lock-Free vs. Wait-free

• Wait-Free: each method call takes a 
finite number of steps to finish 

• Lock-free: in an infinite execution 
infinitely often some method call 
finishes
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Lock-Freedom
• Any wait-free implementation is 

lock-free.  
• Lock-free is the same as wait-

free if the execution is finite.  
• Old saying: “Lock-free is to 

wait-free as deadlock-free is to 
lockout-free.”
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Lock-Free Implementations

• Lock-free consensus is just as 
impossible  

• Lock-free = Wait-free for finite 
executions 

• All the results we presented hold for 
lock-free algorithms also. 
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There is More: Universality

• Consensus is universal 
• From n-thread consensus we can build 

– Wait-free/Lock-free, 
– Linearizable, 
– n-threaded, 
– Implementation 
– Of any sequentially specified object
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