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Linked List Lecture

• Five approaches to concurrent data 
structure design: 
• Coarse-grained locking 
• Fine-grained locking 
• Optimistic synchronization 
• Lazy synchronization 
• Lock-free synchronization
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List-based Set
• We used an ordered list to implement a 

Set: 
• An unordered collection of objects 
• No duplicates 
• Methods: 

• add() a new object 
• remove() an object 
• Test if set contains() object
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Course Grained Locking

a b d

c

Simple but hotspot + bottleneck 
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Fine Grained Locking

a b d

• Allows concurrency but everyone always 
delayed by front guy = bottleneck 

• Lock acquisition overhead
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Optimistic List

b c ea

1. Limited Hotspots (Only at locked 
Add(), Remove(), Find() 
destination locations, not 
traversals) 

2. But two traversals 
3. Yet traversals are wait-free!
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Lazy List

a 0 0 0a b c 0e1d

Lazy Add() and Remove() + Wait-free Contains()
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Lock-free List

a 0 0 0a b c 0e1c

1. Add() and Remove() physically remove 
marked nodes 

2. Wait-free contains() traverses both marked 
and removed nodes 
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Performance 

On 16 node shared memory machine 
Benchmark throughput of Java List-based Set 
algs. Vary % of Contains() method Calls. 



High Contains Ratio
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Lock-free 
Lazy list

Course Grained
Fine Lock-coupling

Ops/sec (90% reads/ 10% updates)
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Low Contains Ratio  

Lock-free 

Lazy list

Course Grained
Fine Lock-coupling

Ops/sec (50% reads/ 50% updates)
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As Contains Ratio Increases  

Lock-free 

Lazy list

Course Grained
Fine Lock-coupling

% Contains()
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Today: Another Fundamental 
Problem

• We told you about 
• Sets implemented using linked lists 

• Next: queues 
• Ubiquitous data structure 
• Often used to buffer requests …
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Shared Pools

• Queue belongs to broader pool class 
• Pool: similar to Set but 

• Allows duplicates (it’s a Multiset) 
• No membership test (no contains())
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Pool Flavors

• Bounded 
• Fixed capacity 
• Good when resources an issue 

• Unbounded 
• Holds any number of objects
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Pool Flavors

• Problem cases: 
• Removing from empty pool 
• Adding to full (bounded) pool 

• Blocking 
• Caller waits until state changes 

• Non-Blocking 
• Method throws exception



© Herlihy-Shavit 13

Queues & Stacks

• Add() and Remove():  
• Queue enqueue (Enq()) and dequeue 

(Deq())  
• Stack push (push()) and pop (pop()) 

• A Queue is a pool with FIFO order on 
enqueues and dequeues 

• A Stack is a pool with LIFO order on 
pushes and pops
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This and next Lectures...

• Bounded, Blocking, Lock-based Queue 
• Unbounded, Non-Blocking, Lock-free Queue 
• Examine effects of ABA problem 
• Unbounded Non-Blocking Lock-free Stack 
• Elimination-Backoff Stack
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Queue: Concurrency

tail head
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Queue: Concurrency

enq(x) y=deq()

enq() and deq() 
work at different 
ends of the object

tail head
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Concurrency

enq(x)

Challenge: what if 
the queue is empty 

or full?

y=deq()
ta

il
head
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Ingredients: Bounded Queue
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Ingredients: Bounded Queue

head
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Ingredients: Bounded Queue

head

tail
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Ingredients: Bounded Queue

Sentinel

head

tail
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Ingredients: Bounded Queue

head

tail
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Ingredients: Bounded Queue

head

tail

First actual item
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Ingredients: Bounded Queue

head

tail
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Ingredients: Bounded Queue

head

tail

Lock out other 
deq() calls

deqLock
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Ingredients: Bounded Queue

head

tail

deqLock
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Ingredients: Bounded Queue

head

tail

Lock out other 
enq() calls

deqLock

enqLock
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Ingredients: Not Done Yet

head

tail

deqLock

enqLock

Need to tell whether 
queue is full or 

empty
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Ingredients: Not Done Yet

head

tail

deqLock

enqLock
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Ingredients: Not Done Yet

head

tail

deqLock

enqLock

Permission to enqueue 8 items

permits

8
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Ingredients: Not Done Yet

head

tail

deqLock

enqLock

Incremented by deq() 
Decremented by enq()

permits

8
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Enqueuer

head

tail

deqLock

enqLock

permits

8
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Enqueuer

head

tail

deqLock

enqLock

permits

8

Lock enqLock
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Enqueuer

head

tail

deqLock

enqLock

permits

8
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Enqueuer

head

tail

deqLock

enqLock

permits

8

Read permits

OK
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Enqueuer

head

tail

deqLock

enqLock

permits

8



© Herlihy-Shavit 26

Enqueuer

head

tail

deqLock

enqLock

permits

8

No need to 
lock tail



© Herlihy-Shavit 27

Enqueuer

head

tail

deqLock

enqLock

permits

8
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Enqueuer

head

tail

deqLock

enqLock

permits

8

Enqueue Node
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Enqueuer

head

tail

deqLock

enqLock

permits

8
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Enqueuer

head

tail

deqLock

enqLock

permits

87

getAndDecrement()
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Enqueuer

head

tail

deqLock

enqLock

permits

87
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Enqueuer

head

tail

deqLock

enqLock

permits

8 Release lock
7
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Enqueuer

head

tail

deqLock

enqLock

permits

7
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Enqueuer

head

tail

deqLock

enqLock

permits

7

If queue was empty, 
notify waiting 

dequeuers
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Unsuccesful Enqueuer

head

tail

deqLock

enqLock

permits

0

Read permits
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Unsuccesful Enqueuer

head

tail

deqLock

enqLock

permits

0

Uh-oh

Read permits



© Herlihy-Shavit 32

Dequeuer

head

tail

deqLock

enqLock

permits

7
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Dequeuer

head

tail

deqLock

enqLock

permits

7

Lock deqLock
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Dequeuer

head

tail

deqLock

enqLock

permits

7

Read sentinel’s next 
field
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Dequeuer

head

tail

deqLock

enqLock

permits

7

Read sentinel’s next 
field

OK



© Herlihy-Shavit 34

Dequeuer

head

tail

deqLock

enqLock

permits

7

Read value
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Dequeuer

head

tail

deqLock

enqLock

permits

7

Read value
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Dequeuer

head

tail

deqLock

enqLock

permits

7
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Dequeuer

head

tail

deqLock

enqLock

permits

7

Make first Node 
new sentinel
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Dequeuer

head

tail

deqLock

enqLock

permits

7
Release 
deqLock
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Dequeuer

head

tail

deqLock

enqLock

permits

7
Release 
deqLock
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Dequeuer

head

tail

deqLock

enqLock

permits

8

Increment 
permits
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Unsuccesful Dequeuer

head

tail

deqLock

enqLock

permits

9

Read sentinel’s next 
field
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Unsuccesful Dequeuer

head

tail

deqLock

enqLock

permits

9

Read sentinel’s next 
field

uh-oh
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Bounded Queue

public class BoundedQueue<T> {
  ReentrantLock enqLock, deqLock;
  Condition notEmptyCondition, notFullCondition;
  AtomicInteger permits;
  Node head; 
  Node tail; 
  int capacity;
  enqLock = new ReentrantLock();
  notFullCondition = enqLock.newCondition();
  deqLock = new ReentrantLock();
  notEmptyCondition = deqLock.newCondition();
}
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Bounded Queue

public class BoundedQueue<T> {
  ReentrantLock enqLock, deqLock;
  Condition notEmptyCondition, notFullCondition;
  AtomicInteger permits;
  Node head; 
  Node tail; 
  int capacity;
  enqLock = new ReentrantLock();
  notFullCondition = enqLock.newCondition();
  deqLock = new ReentrantLock();
  notEmptyCondition = deqLock.newCondition();
}

Enq & deq locks
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Monitor Locks

• The Reentrant Lock is a monitor 
• Allows blocking on a condition rather than 

spinning 
• Threads: 

• acquire and release lock 
• wait on a condition
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Java Monitor Locks

public interface Lock {
 void lock();
 void lockInterruptibly() throw InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock();
}
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Java Locks

public interface Lock {
  void lock();
  void lockInterruptibly() throws InterruptedException;
  boolean tryLock();
  boolean tryLock(long time, TimeUnit unit);
  Condition newCondition();
  void unlock();
}

Acquire lock
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Java Locks

public interface Lock {
  void lock();
  void lockInterruptibly() throws InterruptedException;
  boolean tryLock();
  boolean tryLock(long time, TimeUnit unit);
  Condition newCondition();
  void unlock();
}

Release lock
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Java Locks

public interface Lock {
  void lock();
  void lockInterruptibly() throws InterruptedException;
  boolean tryLock();
  boolean tryLock(long time, TimeUnit unit);
  Condition newCondition();
  void unlock();
}

Conditions to wait on
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Lock Conditions

public interface Condition {
  void await() 
    throws InterruptedException;
  boolean await(long time, TimeUnit unit)
    throws InterruptedException;
  …
  void signal(); 
  void signalAll();
 }
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Lock Conditions

public interface Condition {
  void await() 
    throws InterruptedException;
  boolean await(long time, TimeUnit unit)
    throws InterruptedException;
  …
  void signal(); 
  void signalAll();
 }

Release lock and  
wait on condition



© Herlihy-Shavit 48

Lock Conditions

public interface Condition {
  void await() 
    throws InterruptedException;
  boolean await(long time, TimeUnit unit)
    throws InterruptedException;
  …
  void signal(); 
  void signalAll();
 }

Signal release of  
next thread in line or 
all awaiting threads 
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The await() Method

• Releases lock on q 
• Sleeps (gives up processor) 
• Awakens (resumes running) 
• Reacquires lock & returns

q.await()
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The signal() Method

• Awakens one waiting thread 
• Which will reacquire lock  
• Then returns

q.signal();  
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The signalAll() Method

• Awakens all waiting threads 
• Which will reacquire lock  
• Then returns

q.signalAll();  



© Herlihy-Shavit 52

A Monitor Lock

Cr
it

ic
al

 S
ec

ti
on

waiting room
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A Monitor Lock

Cr
it

ic
al

 S
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ti
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waiting room
Lock()
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A Monitor Lock

Cr
it

ic
al

 S
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waiting room

unLock()
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A Monitor Lock
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Awaiting a Condition

Cr
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Awaiting a Condition

Cr
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waiting room
Lock()
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Awaiting a Condition
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Awaiting a Condition

Cr
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waiting room

await()
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Awaiting a Condition
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Lock()
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Awaiting a Condition
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Awaiting a Condition
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Monitor Signalling 
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Monitor Signalling 
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Lock()
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Monitor Signalling 
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Signal()
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Monitor Signalling 
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unLock()
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Monitor Signalling 
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Monitor Signalling 
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Monitor Signalling 

Cr
it

ic
al

 S
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on

waiting room

I will try to 
enter

Notice, woken thread  
might still loose lock to  
outside contender… 
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Monitor Signaling All
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Monitor Signaling All
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SignalAll()
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Monitor Signaling All
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Any one of 
us can try 
to enter
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Java Synchronized Monitor

• await() is wait() 
• signal() is notify()  
• signalAll() is notifyAll()
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Back to our Bounded Queue

public class BoundedQueue<T> {
  ReentrantLock enqLock, deqLock;
  Condition notEmptyCondition, notFullCondition;
  AtomicInteger permits;
  Node head; 
  Node tail; 
  int capacity;
  enqLock = new ReentrantLock();
  notFullCondition = enqLock.newCondition();
  deqLock = new ReentrantLock();
  notEmptyCondition = deqLock.newCondition();
}
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Bounded Queue

public class BoundedQueue<T> {
  ReentrantLock enqLock, deqLock;
  Condition notEmptyCondition, notFullCondition;
  AtomicInteger permits;
  Node head; 
  Node tail; 
  int capacity;
  enqLock = new ReentrantLock();
  notFullCondition = enqLock.newCondition();
  deqLock = new ReentrantLock();
  notEmptyCondition = deqLock.newCondition();
}

Enq & deq locks
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Bounded Queue

public class BoundedQueue<T> {
  ReentrantLock enqLock, deqLock;
  Condition notEmptyCondition, notFullCondition;
  AtomicInteger permits;
  Node head; 
  Node tail; 
  int capacity;
  enqLock = new ReentrantLock();
  notFullCondition = enqLock.newCondition();
  deqLock = new ReentrantLock();
  notEmptyCondition = deqLock.newCondition();
}

Reentrant lock can have a condition  
for threads to wait on
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Bounded Queue

public class BoundedQueue<T> {
  ReentrantLock enqLock, deqLock;
  Condition notEmptyCondition, notFullCondition;
  AtomicInteger permits;
  Node head; 
  Node tail; 
  int capacity;
  enqLock = new ReentrantLock();
  notFullCondition = enqLock.newCondition();
  deqLock = new ReentrantLock();
  notEmptyCondition = deqLock.newCondition();
}

Num of permits ranges from 0 to capacity
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Bounded Queue

public class BoundedQueue<T> {
  ReentrantLock enqLock, deqLock;
  Condition notEmptyCondition, notFullCondition;
  AtomicInteger permits;
  Node head; 
  Node tail; 
  int capacity;
  enqLock = new ReentrantLock();
  notFullCondition = enqLock.newCondition();
  deqLock = new ReentrantLock();
  notEmptyCondition = deqLock.newCondition();
}

Head and Tail
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Bounded Queue Enq()Part 1
public void enq(T x) {
 boolean mustWakeDequeuers = false; 
 enqLock.lock();
 try { 
     while (permits.get() == 0){ 
            try {notFullCondition.await();}      
     }
     Node e = new Node(x);
     tail.next = e;
     tail = e;
     if (permits.getAndDecrement() == capacity) {
        mustWakeDequeuers = true;
      }
  } finally {
      enqLock.unlock();
  }
    …
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Bounded Queue Enq() Part 1
public void enq(T x) {
 boolean mustWakeDequeuers = false; 
 enqLock.lock();
 try { 
     while (permits.get() == 0){ 
            try {notFullCondition.await()}      
     }
     Node e = new Node(x);
     tail.next = e;
     tail = e;
     if (permits.getAndDecrement() == capacity) {
        mustWakeDequeuers = true;
      }
    } finally {
      enqLock.unlock();
    }
    …

Lock enq lock



© Herlihy-Shavit 64

public void enq(T x) {
 boolean mustWakeDequeuers = false; 
 enqLock.lock();
 try { 
     while (permits.get() == 0){ 
            try {notFullCondition.await()}      
     }
     Node e = new Node(x);
     tail.next = e;
     tail = e;
     if (permits.getAndDecrement() == capacity) {
        mustWakeDequeuers = true;
      }
    } finally {
      enqLock.unlock();
    }
    …

Bounded Queue Enq() Part 1

If permits = 0 wait till  
notFullCondition becomes true  

then check permits again…
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public void enq(T x) {
 boolean mustWakeDequeuers = false; 
 enqLock.lock();
 try { 
     while (permits.get() == 0){ 
            try {notFullCondition.await()}      
     }
     Node e = new Node(x);
     tail.next = e;
     tail = e;
     if (permits.getAndDecrement() == capacity) {
        mustWakeDequeuers = true;
      }
    } finally {
      enqLock.unlock();
    }
    …

Bounded Queue Enq() Part 1

Add a new node
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public void enq(T x) {
 boolean mustWakeDequeuers = false; 
 enqLock.lock();
 try { 
     while (permits.get() == 0){ 
            try {notFullCondition.await}      
     }
     Node e = new Node(x);
     tail.next = e;
     tail = e;
     if (permits.getAndDecrement() == capacity) {
        mustWakeDequeuers = true;
      }
    } finally {
      enqLock.unlock();
    }
    …

Bounded Queue Enq() Part 1

If I was the enqueuer that changed  
queue state from empty to none-empty will  

need to wake dequeuers
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public void enq(T x) {
 boolean mustWakeDequeuers = false; 
 enqLock.lock();
 try { 
     while (permits.get() == 0){ 
            try {notFullCondition.await()}      
     }
     Node e = new Node(x);
     tail.next = e;
     tail = e;
     if (permits.getAndDecrement() == capacity) {
        mustWakeDequeuers = true;
      }
    } finally {
      enqLock.unlock();
    }
    …

Bounded Queue Enq() Part 1

Release the enq lock
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Bounded Queue Enq() Part 1
public void enq(T x) {
 boolean mustWakeDequeuers = false; 
 enqLock.lock();
 try { 
     while (permits.get() == 0){ 
            try {notFullCondition.await();}      
     }
     Node e = new Node(x);
     tail.next = e;
     tail = e;
     if (permits.getAndDecrement() == capacity) {
        mustWakeDequeuers = true;
      }
    } finally {
      enqLock.unlock();
    }
    …
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Bounded Queue Enq() Part 2

public void enq(T x) {
 …
    if (mustWakeDequeuers) {
      deqLock.lock();
      try {
        notEmptyCondition.signalAll();
      } finally {
        deqLock.unlock();
      }
    }
  }
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public void enq(T x) {
 …
    if (mustWakeDequeuers) {
      deqLock.lock();
      try {
        notEmptyCondition.signalAll();
      } finally {
        deqLock.unlock();
      }
    }
  }

Bounded Queue Enq() Part 2

To let the dequeuers know that the  
queue is non-empty, acquire deqLock
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public void enq(T x) {
 …
    if (mustWakeDequeuers) {
      deqLock.lock();
      try {
        notEmptyCondition.signalAll();
      } finally {
        deqLock.unlock();
      }
    }
  }

Bounded Queue Enq() Part 2

Signal all dequeuers waiting that  
they can attempt to re-acquire deqLock 



© Herlihy-Shavit 71

public void enq(T x) {
 …
    if (mustWakeDequeuers) {
      deqLock.lock();
      try {
        notEmptyCondition.signalAll();
      } finally {
        deqLock.unlock();
      }
    }
  }

Bounded Queue Enq() Part 2

Release deqLock
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The Shared Counter

• The enq() and deq() methods 
• Don’t access the same lock 

concurrently 
• But they still share a counter 
• Which they both increment or 

decrement on every method call 
• Can we get rid of this bottleneck? 
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Split the Counter

• The enq() method 
• Decrements only 
• Cares only if value is zero 

• The deq() method 
• Increments only 
• Cares only if value is capacity
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Split Counter

• Enqueuer decrements enqSidePermits
• Dequeuer increments deqSidePermits
• When enqueuer runs out of space 

• Locks deqLock 
• Transfers permits 

• Intermittent synchronization 
• Not with each method call 
• Need both locks! (careful …)
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A Lock-Free Queue
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A Lock-Free Queue

head
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A Lock-Free Queue

head

tail
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A Lock-Free Queue

Sentinel

head

tail
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Compare and Set

CAS
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Enqueue Step One

head

tail

Enqueue Node
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Enqueue Step One

head

tail

Enqueue Node
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Enqueue Step Two

head

tail

Enqueue Node
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Enqueue Step Two

head

tail

Enqueue Node
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Enqueue

• These two steps are not atomic 
• The tail field refers to either 

• Actual last Node (good) 
• Penultimate Node (not so good)
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Enqueue

• What do you do if you find 
• A trailing tail? 

• Stop and fix it 
• If node pointed to by tail has non-null 

next field 
• CAS the queue’s tail field to tail.next
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When CASs Fail

• In Step One (logical enqueue) 
• Retry loop 
• Method still lock-free (why?) 

• In Step Two (physical enqueue) 
• Ignore it (why?)
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Dequeuer

head

tail
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Dequeuer

head

tail

Read value
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Dequeuer

head

tail

Read value
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Dequeuer

head

tail
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Dequeuer

head

tail

Make first Node 
new sentinel
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Memory Reuse?

• What do we do with nodes after we 
dequeue them? 

• Java: let garbage collector deal? 
• Suppose there isn’t a GC, or we don’t 

want to use it?
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Dequeuer

head

tail
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Dequeuer

head

tail

Can recycle
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Simple Solution

• Each thread has a free list of unused 
queue nodes 

• Allocate node: pop from list 
• Free node: push onto list 
• Deal with underflow somehow …
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Why Recycling is Hard

Free pool

head tail
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Why Recycling is Hard

Free pool

head tail

Want to 
rediret 
head 

from grey 
to red 
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Why Recycling is Hard

Free pool

head tail
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Why Recycling is Hard

Free pool

head tail

zzz… 
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Why Recycling is Hard

Free pool

head tail

zzz… 
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Why Recycling is Hard

Free pool

head tail
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Why Recycling is Hard

Free pool

zzz

head tail
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Why Recycling is Hard

Free pool

zzz

head tail
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Why Recycling is Hard

Free pool

Yawn!

head tail
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Why Recycling is Hard

Free pool

head tail

OK, 
here 
I go!
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Why Recycling is Hard

Free pool

head tail

OK, 
here 
I go!
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Final State

Free pool

head tail
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Final State

Free pool

What went wrong?

head tail
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Final State

Free pool

What went wrong?

head tail
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The Dreaded ABA Problem

Head pointer has value A 
Thread reads value A

head tail
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Dreaded ABA continued

zzz Head pointer has value B 
Node A freed

head tail
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Dreaded ABA continued

zzz Head pointer has value B 
Node A freed

head tail
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Dreaded ABA continued

Yawn! Head pointer has value A again 
Node A recycled & reinitialized

head tail
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Dreaded ABA continued

CAS succeeds because pointer matches 
even though pointer’s meaning has changed

head tail
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Dreaded ABA continued

CAS succeeds because pointer matches 
even though pointer’s meaning has changed

head tail
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The Dreaded ABA Problem

• Is a result of CAS() semantics (Sun, Intel, 
AMD) 

• Does not arise with Load-Locked/Store-
Conditional (IBM) 
• store conditional fails if memory 

location was updated since load-locked 
operation
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Dreaded ABA – A Solution

• Tag each pointer with a counter 
• Unique over lifetime of node 
• Pointer size vs word size issues 
• Overflow? 

• Don’t worry be happy? 
• Bounded tags? 

• AtomicStampedReference class
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A Concurrent Stack

• Add() and Remove() of Stack are called 
push() and pop()  

• A Stack is a pool with LIFO order on 
pushes and pops
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Unbounded Lock-free Stack

Top
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Unbounded Lock-free Stack

Top
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Push()

TopCAS
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Push()

Top
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Push()

TopCAS
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Push()

Top
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Push()

Top



© Herlihy-Shavit 106

Push()

Top
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Push()

TopCAS
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Push()

Top
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Pop()

Top
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Pop()

TopCAS
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Pop()

TopCAS
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Pop()

TopCAS
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Pop()

Top
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public class LockFreeStack {
  private AtomicReference top = new
    AtomicReference(null);  
  
  public boolean tryPush(Node node){
    Node oldTop = top.get();    
    node.next = oldTop;      
    return(top.compareAndSet(oldTop, node))
  }
  public void push(T value) {

  Node node = new Node(value); 
    while (true) {
      if (tryPush(node)) {
        return;
      } else
        backoff.backoff()
    }
  } 

Lock-free Stack



public class LockFreeStack {
  private AtomicReference top = new
    AtomicReference(null);  
  
  public boolean tryPush(Node node){
    Node oldTop = top.get();    
    node.next = oldTop;      
    return(top.compareAndSet(oldTop, node))
  }
  public void push(T value) {

  Node node = new Node(value); 
    while (true) {
      if (tryPush(node)) {
        return;
      } else
        backoff.backoff()
    }
  } 
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Lock-free Stack

Push uses tryPush() method



public class LockFreeStack {
  private AtomicReference top = new
    AtomicReference(null);  
  
  public boolean tryPush(Node node){
    Node oldTop = top.get();    
    node.next = oldTop;      
    return(top.compareAndSet(oldTop, node))
  }
  public void push(T value) {

  Node node = new Node(value); 
    while (true) {
      if (tryPush(node)) {
        return;
      } else
        backoff.backoff()
    }
  } 
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Lock-free Stack

Create a new node



public class LockFreeStack {
  private AtomicReference top = new
    AtomicReference(null);  
  
  public boolean tryPush(Node node){
    Node oldTop = top.get();    
    node.next = oldTop;      
    return(top.compareAndSet(oldTop, node))
  }
  public void push(T value) {

  Node node = new Node(value); 
    while (true) {
      if (tryPush(node)) {
        return;
      } else
        backoff.backoff()
    }
  } 
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Lock-free Stack

Then try to push:  
if tryPush()  
fails back-off  
before retrying



public class LockFreeStack {
  private AtomicReference top = new
    AtomicReference(null);  
  
  public boolean tryPush(Node node){
    Node oldTop = top.get();    
    node.next = oldTop;      
    return(top.compareAndSet(oldTop, node))
  }
  public void push(T value) {

  Node node = new Node(value); 
    while (true) {
      if (tryPush(node)) {
        return;
      } else
        backoff.backoff()
    }
  } 
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Lock-free Stack

tryPush() attempts to push a node at top 



public class LockFreeStack {
  private AtomicReference top = new
    AtomicReference(null);  
  
  public boolean tryPush(Node node){
    Node oldTop = top.get();    
    node.next = oldTop;      
    return(top.compareAndSet(oldTop, node))
  }
  public void push(T value) {

  Node node = new Node(value); 
    while (true) {
      if (tryPush(node)) {
        return;
      } else
        backoff.backoff()
    }
  } 
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Lock-free Stack

Read top value



public class LockFreeStack {
  private AtomicReference top = new
    AtomicReference(null);  
  
  public boolean tryPush(Node node){
    Node oldTop = top.get();    
    node.next = oldTop;      
    return(top.compareAndSet(oldTop, node))
  }
  public void push(T value) {

  Node node = new Node(value); 
    while (true) {
      if (tryPush(node)) {
        return;
      } else
        backoff.backoff()
    }
  } 
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Lock-free Stack

current top will be new node’s successor



public class LockFreeStack {
  private AtomicReference top = new
    AtomicReference(null);  
  
  public boolean tryPush(Node node){
    Node oldTop = top.get();    
    node.next = oldTop;      
    return(top.compareAndSet(oldTop, node))
  }
  public void push(T value) {

  Node node = new Node(value); 
    while (true) {
      if (tryPush(node)) {
        return;
      } else
        backoff.backoff()
    }
  } 
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Lock-free Stack

Try to swing top to point at my new node
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Lock-free Stack

• Good: No locking  
• Bad: if no GC then ABA as in queue (add 

time stamps) 
• Bad: Contention on top (add backoff) 
• Bad: No parallelism 

• Is a stack inherently sequential? 
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Elimination-Backoff Stack

• How to “turn contention into parallelism” 
• Replace regular exponential-backoff  
• with an alternative elimination-backoff 

mechanism
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Observation

Push(   )

Pop(   )

linearizable stack
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Observation

Push(   )

Pop(   )

linearizable stack
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Observation

Push(   )

Pop(   )

linearizable stack
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Observation

Push(   )

Pop(   )

linearizable stack

After any equal number  
of pushes and pops,  
stack stays the same
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Idea: Elimination Array

Push(   )

Pop()

stack

Pick at  
random 

Pick at  
random 

Elimination  
Array
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Push Collides With Pop

Push(   )

Pop()

stack
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Push Collides With Pop

Push(   )

Pop()

stack
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Push Collides With Pop

Push(   )

Pop()

stack
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Push Collides With Pop

Push(   )

Pop()

stack

continue

continue
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Push Collides With Pop

Push(   )

Pop()

stack

continue

continue

No need to  
access stack 
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No Collision

Push(  )

Pop()

stack
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No Collision

Push(  )

Pop()

stack
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Pop()
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No Collision

Push(  )

Pop()
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No Collision

Push(  )

Pop()

stack
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No Collision

Push(  )

Pop()

stack
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No Collision

Push(  )

Pop()

stack

If no collision,  
access stack 
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No Collision

Push(  )

Pop()

stack

If no collision,  
access stack 

If pushes collide 
or pops collide 
access stack 
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Elimination-Backoff Stack

• Lock-free stack + elimination array 
• Access Lock-free stack,  

– If uncontended, apply operation  
– if contended, back off to elimination 

array and attempt elimination 
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Elimination-Backoff Stack

Push(  )

Pop()
Top
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Elimination-Backoff Stack

Push(  )

Pop()
TopCAS
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Elimination-Backoff Stack

Push(  )

Pop()
TopCAS

If failed CAS back-off
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Dynamic Range and Delay

Push(  )

Pick range and max time 
to wait for collision based 
on level of 
contention encountered
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Dynamic Range and Delay

Push(  )

Pick range and max time 
to wait for collision based 
on level of 
contention encountered
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Dynamic Range and Delay

Push(  )

Pick range and max time 
to wait for collision based 
on level of 
contention encountered
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Linearizability

• Un-eliminated Lock-free stack calls: 
• linearized as before 

• Eliminated calls: 
• linearize push() immediately before 

the pop() at the collision point 
• Combination is a linearizable stack



Linearizability

137

push(x) push(y) pop:y pop:x
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138

push(x) push(y) pop:y pop:x

eliminatedstack stack

push
pop
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139

push(x) push(y) pop:ypop:x

eliminated
stack

push
pop
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Backoff Has Dual Effect

• Elimination introduces parallelism 
• Backoff onto array cuts contention on 

lock-free stack 
• cuts down total number of threads 

ever accessing lock-free stack



© Herlihy-Shavit 133

public class EliminationArray {
  private static final int duration = ...;
  private static final int timeUnit = ...;
  Exchanger<T>[] exchanger;
  Random random;
  public EliminationArray(int capacity) {
    exchanger = (Exchanger<T>[]) new

   Exchanger[capacity];
    for (int i = 0; i < capacity; i++) {
      exchanger[i] = new Exchanger<T>();
    }
    random = new Random();
  }
  …
}

Elimination Array
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public class EliminationArray {
  private static final int duration = ...;
  private static final int timeUnit = ...;
  Exchanger<T>[] exchanger;
  Random random;
  public EliminationArray(int capacity) {
    exchanger = (Exchanger<T>[]) new
                   Exchanger[capacity];
    for (int i = 0; i < capacity; i++) {
      exchanger[i] = new Exchanger<T>();
    }
    random = new Random();
  }
  …
}

Elimination Array

An array of exchangers
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public class Exchanger<T> {
  AtomicStampedReference<T> slot = new 
AtomicStampedReference<T>(null, 0);

A Lock-Free Exchanger
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public class Exchanger<T> {
  AtomicStampedReference<T> slot = new 
AtomicStampedReference<T>(null, 0);

A Lock-Free Exchanger

Slot holds atomically modifiable reference 
and time stamp
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Atomic Stamped Reference

• AtomicStampedReference class 
• Java.util.concurrent.atomic 

package

address S

Stamp

Reference
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Extracting Reference & Stamp

public T get(int[] stampHolder); 
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Extracting Reference & Stamp

Public T get(int[] stampHolder); 

Returns 
reference to 

object of 
type T

Returns stamp at 
array index 0!
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public T Exchange(T myItem, long nanos) throws      
TimeoutException {
    long timeBound = System.nanoTime() + nanos;
    int[] stampHolder = {0};
    while (true) {
      if (System.nanoTime() > timeBound)
        throw new TimeoutException();
      T herItem = slot.get(stampHolder);
      int stamp = stampHolder[0];
      switch(stamp % 3) {
        case 0:  // slot is free
        case 1:  // someone waiting for me
        case 2:  // others exchanging
        }
    }}

The Exchange
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public T Exchange(T myItem, long nanos) throws      
TimeoutException {
    long timeBound = System.nanoTime() + nanos;
    int[] stampHolder = {0};
    while (true) {
      if (System.nanoTime() > timeBound)
        throw new TimeoutException();
      T herItem = slot.get(stampHolder);
      int stamp = stampHolder[0];
      switch(stamp % 3) {
        case 0:  // slot is free
        case 1:  // someone waiting for me
        case 2:  // others exchanging
        }
    }}

The Exchange

Input item and max time to 
wait for exchange before 
timing out
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public T Exchange(T myItem, long nanos) throws      
TimeoutException {
    long timeBound = System.nanoTime() + nanos;
    int[] stampHolder = {0};
    while (true) {
      if (System.nanoTime() > timeBound)
        throw new TimeoutException();
      T herItem = slot.get(stampHolder);
      int stamp = stampHolder[0];
      switch(stamp % 3) {
        case 0:  // slot is free
        case 1:  // someone waiting for me
        case 2:  // others exchanging
        }
    }}

The Exchange

Array to hold extracted 
timestamp
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public T Exchange(T myItem, long nanos) throws      
TimeoutException {
    long timeBound = System.nanoTime() + nanos;
    int[] stampHolder = {0};
    while (true) {
      if (System.nanoTime() > timeBound)
        throw new TimeoutException();
      T herItem = slot.get(stampHolder);
      int stamp = stampHolder[0];
      switch(stamp % 3) {
        case 0:  // slot is free
        case 1:  // someone waiting for me
        case 2:  // others exchanging
        }
    }}

The Exchange

Loop as long as time to 
attempt exchange does not 
run out
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public T Exchange(T myItem, long nanos) throws      
TimeoutException {
    long timeBound = System.nanoTime() + nanos;
    int[] stampHolder = {0};
    while (true) {
      if (System.nanoTime() > timeBound)
        throw new TimeoutException();
      T herItem = slot.get(stampHolder);
      int stamp = stampHolder[0];
      switch(stamp % 3) {
        case 0:  // slot is free
        case 1:  // someone waiting for me
        case 2:  // others exchanging
        }
    }}

The Exchange

Get others item and time-
stamp
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public T Exchange(T myItem, long nanos) throws      
TimeoutException {
    long timeBound = System.nanoTime() + nanos;
    int[] stampHolder = {0};
    while (true) {
      if (System.nanoTime() > timeBound)
        throw new TimeoutException();
      T herItem = slot.get(stampHolder);
      int stamp = stampHolder[0];
      switch(stamp % 3) {
        case 0:  // slot is free
        case 1:  // someone waiting for me
        case 2:  // others exchanging
        }
    }}

The Exchange

Exchanger slot has three 
states determined by the 
timestamp mod 3
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Lock-free Exchanger

Slot

item stamp/state

0
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Lock-free Exchanger

SlotState = 0

item stamp/state

0
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Lock-free Exchanger

SlotState = 0

item stamp/state

0CAS
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Lock-free Exchanger

Slot

item stamp/state

1
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Lock-free Exchanger

Slot

State changed 
to 1 wait for 
someone to 

appear…

item stamp/state

1
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Lock-free Exchanger

Slot

Still waiting for 
someone to 

appear…

item stamp/state

1
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Lock-free Exchanger

Slot

Still waiting for 
someone to 

appear…

item stamp/state

1

Try to exchange 
item and set 

state to 2
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Lock-free Exchanger

Slot

Still waiting for 
someone to 

appear…

item stamp/state

1CAS

Try to exchange 
item and set 

state to 2
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Lock-free Exchanger

Slot

item stamp/state

2
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Lock-free Exchanger

Slot

item stamp/state

2
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Lock-free Exchanger

Slot

2 means someone 
showed up, take 
item and reset to 

0 

item stamp/state

2
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Lock-free Exchanger

Slot

item stamp/state

2
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Lock-free Exchanger

Slot

Read item and 
increment  

timestamp to  
0 mod 3

item stamp/state

2
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Lock-free Exchanger

Slot

Read item and 
increment  

timestamp to  
0 mod 3

item stamp/state

2
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Lock-free Exchanger

Slot

Read item and 
increment  

timestamp to  
0 mod 3

item stamp/state

2
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Lock-free Exchanger

Slot

Read item and 
increment  

timestamp to  
0 mod 3

item stamp/state

20
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case 0: // slot is free
     if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
     while (System.nanoTime() < timeBound){
       herItem = slot.get(stampHolder);
       if (stampHolder[0] == stamp + 2) {
         slot.set(null, stamp + 3); 
         return herItem; 
       }} 
     if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new 
TimeoutException();
      } else {
         herItem = slot.get(stampHolder);
         slot.set(null, stamp + 3); 
         return herItem;
     }
} break; 

Exchanger State 0
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case 0: // slot is free
     if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
     while (System.nanoTime() < timeBound){
       herItem = slot.get(stampHolder);
       if (stampHolder[0] == stamp + 2) {
         slot.set(null, stamp + 3); 
         return herItem; 
       }} 
     if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new 
TimeoutException();
      } else {
         herItem = slot.get(stampHolder);
         slot.set(null, stamp + 3); 
         return herItem;
     }
} break; 

Exchanger State 0

Slot is free, try and insert 
myItem and change state to 
1
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case 0: // slot is free
     if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
     while (System.nanoTime() < timeBound){
       herItem = slot.get(stampHolder);
       if (stampHolder[0] == stamp + 2) {
         slot.set(null, stamp + 3); 
         return herItem; 
       }} 
     if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new 
TimeoutException();
      } else {
         herItem = slot.get(stampHolder);
         slot.set(null, stamp + 3); 
         return herItem;
     }
} break; 

Exchanger State 0

Loop while still time left to 
try and exchange
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case 0: // slot is free
     if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
     while (System.nanoTime() < timeBound){
       herItem = slot.get(stampHolder);
       if (stampHolder[0] == stamp + 2) {
         slot.set(null, stamp + 3); 
         return herItem; 
       }} 
     if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new 
TimeoutException();
      } else {
         herItem = slot.get(stampHolder);
         slot.set(null, stamp + 3); 
         return herItem;
     }
} break; 

Exchanger State 0

Get item and stamp in slot 
and check if state changed 
to 2
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case 0: // slot is free
     if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
     while (System.nanoTime() < timeBound){
       herItem = slot.get(stampHolder);
       if (stampHolder[0] == stamp + 2) {
         slot.set(null, stamp + 3); 
         return herItem; 
       }} 
     if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new 
TimeoutException();
      } else {
         herItem = slot.get(stampHolder);
         slot.set(null, stamp + 3); 
         return herItem;
     }
} break; 

Exchanger State 0

If successful reset slot state 
to 0
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case 0: // slot is free
     if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
     while (System.nanoTime() < timeBound){
       herItem = slot.get(stampHolder);
       if (stampHolder[0] == stamp + 2) {
         slot.set(null, stamp + 3); 
         return herItem; 
       }} 
     if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new 
TimeoutException();
      } else {
         herItem = slot.get(stampHolder);
         slot.set(null, stamp + 3); 
         return herItem;
     }
} break; 

Exchanger State 0

and return item found in 
slot
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case 0: // slot is free
     if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
     while (System.nanoTime() < timeBound){
       herItem = slot.get(stampHolder);
       if (stampHolder[0] == stamp + 2) {
         slot.set(null, stamp + 3); 
         return herItem; 
       }} 
     if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new 
TimeoutException();
      } else {
         herItem = slot.get(stampHolder);
         slot.set(null, stamp + 3); 
         return herItem;
     }
} break; 

Exchanger State 0

Otherwise we ran out of 
time, try and reset state to 
0, if successful time out
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case 0: // slot is free
     if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
     while (System.nanoTime() < timeBound){
       herItem = slot.get(stampHolder);
       if (stampHolder[0] == stamp + 2) {
         slot.set(null, stamp + 3); 
         return herItem; 
       }} 
     if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new 
TimeoutException();
      } else {
         herItem = slot.get(stampHolder);
         slot.set(null, stamp + 3); 
         return herItem;
     }
} break; 

Exchanger State 0

If reset failed can only be 
that someone showed up 
after all, take her item 
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case 0: // slot is free
     if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
     while (System.nanoTime() < timeBound){
       herItem = slot.get(stampHolder);
       if (stampHolder[0] == stamp + 2) {
         slot.set(null, stamp + 3); 
         return herItem; 
       }} 
     if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new 
TimeoutException();
      } else {
         herItem = slot.get(stampHolder);
         slot.set(null, stamp + 3); 
         return herItem;
     }
} break; 

Exchanger State 0

Set slot to 0 with new time 
stamp and return the item 
found 
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case 0: // slot is free
     if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
     while (System.nanoTime() < timeBound){
       herItem = slot.get(stampHolder);
       if (stampHolder[0] == stamp + 2) {
         slot.set(null, stamp + 3); 
         return herItem; 
       }} 
     if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new 
TimeoutException();
      } else {
         herItem = slot.get(stampHolder);
         slot.set(null, stamp + 3); 
         return herItem;
     }
} break; 

Exchanger State 0

If initial CAS failed then 
someone else changed slot 
from 0 to 1 so retry from 
start 
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case 1:   // someone waiting for me
        if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1))
          return herItem;
        break;
case 2:   // others in middle of exchanging
        break;
default:  // impossible
        break;
      }
    }
  }
}

Exchanger States 1 and 2
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case 1:   // someone waiting for me
        if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1))
          return herItem;
        break;
case 2:   // others in middle of exchanging
        break;
default:  // impossible
        break;
      }
    }
  }
}

Exchanger States 1 and 2

state 1 means someone is 
waiting for an exchange, so 
attempt to CAS my Item in 
and change state to 2 
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case 1:   // someone waiting for me
        if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1))
          return herItem;
        break;
case 2:   // others in middle of exchanging
        break;
default:  // impossible
        break;
      }
    }
  }
}

Exchanger States 1 and 2

If successful return her 
item, state is now 2, 
otherwise someone else 
took her item so try again 
from start 
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case 1:   // someone waiting for me
        if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1))
          return herItem;
        break;
case 2:   // others in middle of exchanging
        break;
default:  // impossible
        break;
      }
    }
  }
}

Exchanger States 1 and 2

If state is 2 then some other 
threads are using slot to 
exchange so start again 
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Lock-free Exchanger

Slot

item stamp/state

0
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Lock-free Exchanger

SlotState = 0

item stamp/state

0
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Lock-free Exchanger

SlotState = 0

item stamp/state

0CAS
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Lock-free Exchanger

Slot

item stamp/state

1
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Lock-free Exchanger

Slot

State changed 
to 1 wait for 
someone to 

appear…

item stamp/state

1
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Lock-free Exchanger

Slot

Still waiting for 
someone to 

appear…

item stamp/state

1
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Lock-free Exchanger

Slot

Still waiting for 
someone to 

appear…

item stamp/state

1

Try to exchange 
item and set 

state to 2
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Lock-free Exchanger

Slot

Still waiting for 
someone to 

appear…

item stamp/state

1CAS

Try to exchange 
item and set 

state to 2
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Lock-free Exchanger

Slot

item stamp/state

2
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Lock-free Exchanger

Slot

item stamp/state

2
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Lock-free Exchanger

Slot

2 means someone 
showed up, take 
item and reset to 

0 

item stamp/state

2



© Herlihy-Shavit 150

Lock-free Exchanger

Slot

item stamp/state

2
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Lock-free Exchanger

Slot

Read item and 
increment  

timestamp to  
0 mod 3

item stamp/state

2
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Lock-free Exchanger

Slot

Read item and 
increment  

timestamp to  
0 mod 3

item stamp/state

2
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Lock-free Exchanger

Slot

Read item and 
increment  

timestamp to  
0 mod 3

item stamp/state

2
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Lock-free Exchanger

Slot

Read item and 
increment  

timestamp to  
0 mod 3

item stamp/state

20
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Our Exchanger Slot 

• Notice that we showed a general lock-
free exchanger  

• Its lock-free because the only way an 
exchange can fail is if others repeatedly 
succeeded or no-one showed up 

• The slot we need does not require 
symmetric exchange
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public class EliminationArray {
…
public T visit(T value, int Range) throws TimeoutException {
    int slot = random.nextInt(Range);
    int nanodur = convertToNanos(duration, timeUnit))    
    return (exchanger[slot].exchange(value, nanodur )  
}}

Elimination Array
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public class EliminationArray {
…
public T visit(T value, int Range) throws TimeoutException {
    int slot = random.nextInt(Range)    
    return (exchanger[slot].exchange(value, nanodur))  
}}

Elimination Array

visit the elimination array with a value 
and a range (duration to wait is not 
dynamic)
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public class EliminationArray {
…
public T visit(T value, int Range) throws TimeoutException {
    int slot = random.nextInt(Range)    
    return (exchanger[slot].exchange(value, nanodur))  
}}

Elimination Array
Pick a random array entry
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public class EliminationArray {
…
public T visit(T value, int Range) throws TimeoutException {
    int slot = random.nextInt(Range)    
    return (exchanger[slot].exchange(value, nanodur))  
}}

Elimination Array

Exchange value or time out
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public void push(T value) {
...
 while (true) {
  if (tryPush(node)) { 
    return;
  } else try { 
      T otherValue =        
eliminationArray.visit(value,policy.Range);
      if (otherValue == null) {
         return; 
    }
} 

Elimination Stack Push
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public void push(T value) {
...
 while (true) {
  if (tryPush(node)) { 
    return;
  } else try { 
      T otherValue =        
eliminationArray.visit(value,policy.Range);
      if (otherValue == null) {
         return; 
    }
} 

Elimination Stack Push

First try to push
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public void push(T value) {
...
 while (true) {
  if (tryPush(node)) { 
    return;
  } else try { 
      T otherValue =        
eliminationArray.visit(value,policy.Range);
      if (otherValue == null) {
         return; 
    }
} 

Elimination Stack Push

If failed back-off to try and eliminate
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public void push(T value) {
...
 while (true) {
  if (tryPush(node)) { 
    return;
  } else try { 
      T otherValue =        
eliminationArray.visit(value,policy.Range);
      if (otherValue == null) {
         return; 
    }
} 

Elimination Stack Push

Value being pushed and range to try
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public void push(T value) {
...
 while (true) {
  if (tryPush(node)) { 
    return;
  } else try { 
      T otherValue =        
eliminationArray.visit(value,policy.Range);
      if (otherValue == null) {
         return; 
    }
} 

Elimination Stack Push

Only a pop has null value  
so elimination was successful
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public void push(T value) {
...
 while (true) {
  if (tryPush(node)) { 
    return;
  } else try { 
      T otherValue =        
eliminationArray.visit(value,policy.Range);
      if (otherValue == null) {
         return; 
    }
} 

Elimination Stack Push

Else retry push on lock-free stack
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public T pop() {  
 ...
 while (true) { 
  if (tryPop()) {
   return returnNode.value;
   } else 
      try { 
        T otherValue = eliminationArray.visit(null,policy.Range);
        if ( otherValue != null) { 
         return otherValue; 
         }
      }
}} 

Elimination Stack Pop
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public T pop() {  
 ...
 while (true) { 
  if (tryPop()) {
   return returnNode.value;
   } else 
      try { 
        T otherValue = eliminationArray.visit(null,policy.Range;
        if ( otherValue != null) { 
         return otherValue; 
         }
      }
}} 

Elimination Stack Pop

If non-null other  
thread must have pushed,  
so elimination succeeds
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Measurements

196

repeat
op:=random(push,pop)
perform op
w:=random(0..workload)
wait w millisecs

until 500000 operations performed

Figure 6: Produce-Consume benchmark

thread t keeps a value spin which holds the amount of time
that t should delay while waiting to be collided. The spin
value may change within a predetermined range. When t
successfully collides, it increments a local counter. When
the counter exceeds some limit, t doubles spin. If t fails to
collide, it decrements the local counter. When the counter
decreases bellow some limit, spin is halved. This localized
version of exponential backo� serves a dual role: it increases
the chance of successful eliminations, and it plays the role
of a backo� mechanism on the central stack structure.

There are obviously other conceivable ways of adaptively
updating these parameters, and this is a subject for further
research.

4. PERFORMANCE
We evaluated the performance of our elimination-backo�

stack algorithm relative to other known methods by run-
ning a collection of synthetic benchmarks on a 14 node Sun
EnterpriseTM E6500, an SMP machine formed from 7 boards
of two 400MHz UltraSparcTM processors, connected by a
crossbar UPA switch, and running Solaris 9. Our C code
was compiled by a Sun cc compiler 5.3, with flags -xO5
-xarch=v8plusa.

4.1 The Benchmarked Algorithms
We compared our stack implementation to the lock-free

but non-linearizable elimination tree of Shavit and Touitou
[17] and to two linearizable methods: a serial stack protected
by MCS lock [13], and a non-blocking implementation due
to Treiber [22].

• MCS A serial stack protected by an MCS-queue-lock
[13]. Each processor locks the top of the stack, changes
it according to the type of the operation, and then
unlocks it. The lock code was taken directly from the
article.

• Treiber Our implementation of Treiber’s non-blocking
stack followed the code given in [22]. We added to it
exponential backo� scheme, as introduced in [2].

• ETree An elimination tree [17] based stack. Its pa-
rameters were chosen so as to optimize its performance,
based on empirical testing.

4.2 The Produce-Consume Benchmark
In the produce-consume benchmark each thread alter-

nately performs a push or pop operation and then waits for
a period or time, whose length is chosen uniformly at ran-
dom from the range: [0 . . . workload]. The waiting period
simulates the local work that is typically done by threads in
real applications between stack operations (see Figure 6). In
all our experiments the stack was initialized as su⇥ciently
filled to prevent it from becoming empty during the run.
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Figure 7: Throughput and latency of di�erent stack
implementations with varying number of threads.
Each thread performs 50% pushs, 50% pops.

4.3 Measuring theperformance of benchmarked
algorithms

We ran the produce-consume benchmark specified above
varying the number of threads and measuring latency, the
average amount of time spent per operation, and throughput,
the number of operations per second. We compute through-
put and latency by measuring the total time required to
perform the specific amount of operations by each thread.
We refer to the longest time as the time needed to complete
the specified amount of work.

To counteract transient startup e�ects, we synchronized
the start of the threads (i.e., no thread can start before all
other threads finished their initialization phase). Each data
point is the average of three runs, with the results varying
by at most 1.4% throughout all our benchmarks.

4.4 Empirical Results
Figure 7 shows the results of a benchmark in which half a

million operations were performed by every working thread,
with each thread performing 50% pushs and 50% pops on
average. Figure 9 provides a detailed view of the three best
performers. From Figure 7 it can be seen that our results for
known structures generally conform with those of [15, 16],
and that Treiber’s algorithm with added exponential backo�
is the best among known techniques. It can also be seen that
the new algorithm provides superior scalable performance at
all tested concurrency levels. The throughput gap between
our algorithm and Treiber’s algorithm with backo� grows
as concurrency increases, and at 32 threads the new algo-
rithm is almost three times faster. Such a significant gap in
performance can be explained by reviewing the di�erence in
latency for the two algorithms.

Table 1 shows latency measured on a single dedicated pro-

210

(14 processor sun)

elimination backoff 

stack

(50% push, 50% pop)

lock

lockfree with backoff

lockfree (no backoff)
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Summary
• We saw both lock-based and lock-free 

implementations of  
• queues and stacks 

• Don’t be quick to declare a data structure 
inherently sequential 
• Linearizable stack is not inherently 

sequential  
• ABA is a real problem, pay attention


