Concurrent Queues and
Stacks

Christof Fetzer, TU Dresden

Based on slides by Maurice Herlihy
and Nir Shavit

Linked List Lecture

e Five approaches to concurrent data
structure design:

Coarse-grained locking
Fine-grained locking
Optimistic synchronization
Lazy synchronization
Lock-free synchronization

© Herlihy-Shavit

List-based Set

e We used an ordered list to implement a
Set:

An unordered collection of objects

No duplicates
Methods:

add() a new object
remove() an object
Test if set contains() object

© Herlihy-Shavit

Course Grained Locking

%—@3—»@3?9@3

<l -

Simple but hotspot + bottleneck

© Herlihy-Shavit

Fine Grained Locking

6 6 6 6

(I3—(F—{[3—{dD)

o Allows concurrency but everyone always
delayed by front guy = bottleneck

e Lock acquisition overhead

© Herlihy-Shavit 5

Optimistic List

& b6 -6 .6 6
C3—>C3—>C3—>[T_-]—>ED

1. Limited Hotspots (Only at locked
Add (), Remove(), Find()
destination locations, not
traversals)

2. But two traversals
3. Yet traversals are wait-free! .

Lazy List

b g

6 o6 6 6 o6
(T T3~ 3~ 3@ 3~

Lazy Add() and Remove() + Wait-free Contains()

© Herlihy-Shavit 7

Lock-free List

™
(I3[0 F=(B[F_ ([T F=>{(e[0)

1. Add() and Remove() physically remove
marked nodes

2. Wait-free contains() traverses both marked
and removed nodes

© Herlihy-Shavit 8

Performance

On 16 node shared memory machine
Benchmark throughput of Java List-based Set
algs. Vary % of Contains() method Calls.

© Herlihy-Shavit 251

1.2e+07
1e+07
8e+06
6e+06
4e+0
2e+(

High Contains Ratio

Ops/sec (90% reads/ 10% updates)

I BN N AP SN
a_—— | K- Lock-free
.ii\l~iLﬂ.

- M Lazy list

% —+—+—+—+—+—+ Course Grained
D

Fine Lock-coupling

© Herlihy-Shavit 252

Low Contains Ratio

Ops/sec (50% reads/ 50% updates)

3.5e+06 | .
3e+06 % % Kose™ % 1 Lock-free

2.5e+06 | | |
2e+06

1 .5e+86_
1e+06

6 -
500000 - Course Grained

0 ‘oot 6-—1o——-O-—6-—016-—6—3—b Fine Lock-coupling

5 10 15 20 25 30
threads

%%% /l«:’%‘l\i{loli/’.‘i“.*l -Q Lazy list
= = | Ko/ i

¥
R | A
e]

_
X

© Herlihy-Shavit 253

8e+06

7e+06
6e+06 -
5e+06 r
4e+06 -
3e+06 r

2e+06

1e+06 W

As Contains Ratio Increases

Ops/sec (32 threads/0 load)

% /,/,7”/;*’; / -
T e :
45 & an Fany 4Ry yans Cb & {5
10 20 30 40 50 60 70 80 90
% % Contains()
© Herlihy-Shavit

Lock-free
Lazy list

Course Grained
Fine Lock-coupling

254

Today: Another Fundamental
Problem

e We told you about

Sets implemented using linked lists
e Next: queues

Ubiquitous data structure

Often used to buffer requests ...

© Herlihy-Shavit

Shared Pools

e Queue belongs to broader pool class
e Pool: similar to Set but
Allows duplicates (it’s a Multiset)
No membership test (no contains())

© Herlihy-Shavit

10

Pool Flavors

e Bounded

Fixed capacity

Good when resources an issue
« Unbounded

Holds any number of objects

© Herlihy-Shavit

11

Pool Flavors

e Problem cases:
Removing from empty pool
Adding to full (bounded) pool
e Blocking
Caller waits until state changes
e Non-Blocking
Method throws exception

© Herlihy-Shavit

12

Queues & Stacks

e Add () and Remove():

Queue enqueue (Eng()) and dequeue

(Deg())
Stack push (push()) and pop (pop())

e A Queue is a pool with FIFO order on
enqueues and dequeues

e A Stack is a pool with LIFO order on
pushes and pops

© Herlihy-Shavit 13

This and next Lectures...

e Bounded, Blocking, Lock-based Queue

e Unbounded, Non-Blocking, Lock-free Queue
e Examine effects of ABA problem

e Unbounded Non-Blocking Lock-free Stack

o Elimination-Backoff Stack

© Herlihy-Shavit

14

Queue: Concurrency

tail head

iE Tk i

© Herlihy-Shavit

15

Queue: Concurrency

enq() and deq()
work at different
ends of the object

© Herlihy-Shavit

O
o

Concurrency

J -
E o

Challenge: what if
the queue is empty

or full?

© Herlihy-Shavit 16

Ingredients: Bounded Queue

r

~\

© Herlihy-Shavit

17

Ingredients: Bounded Queue

st — BN

© Herlihy-Shavit

17

Ingredients: Bounded Queue

o 0N

© Herlihy-Shavit

Ingredients: Bounded Queue

p

tail

Sentinel

© Herlihy-Shavit

Ingredients: Bounded Queue

o 0N

© Herlihy-Shavit

Ingredients: Bounded Queue

p

tail

First actual item

© Herlihy-Shavit

Ingredients: Bounded Queue

s +—GF— O

tail

© Herlihy-Shavit

Ingredients: Bounded Queue

r

head

tail
deqlLock
\\._& Lock out other

deq() calls

© Herlihy-Shavit 19

Ingredients: Bounded Queue

r

head
tail

deqgLock

e mmd ©N
O,

© Herlihy-Shavit

20

Ingredients: Bounded Queue

r

head

tail

deqlLock \\—-’
enqlLock
& Lock out other

enq() calls

© Herlihy-Shavit 20

Ingredients: Not Done Yet

r

head

tail
deqlLock \\—-’

enqlLock 6
Need to tell whether
queue is full or
empty
_)

© Herlihy-Shavit 21

Ingredients: Not Done Yet

s +—(EF— ON

tail

deqlock \\‘»

enqlLock

© Herlihy-Shavit

22

Ingredients: Not Done Yet

r

head
tail

deqlLock
enqglLock

permits

Permission to enqueue 8 items

© Herlihy-Shavit 22

Ingredients: Not Done Yet

r

head

tail

deqlLock

enqglLock

Incremented by deq()
Decremented by enq()

© Herlihy-Shavit 23

head
tail

deqlock
enqlLock

permits

Enqueuer

e[5— 6N

N

© Herlihy-Shavit

24

Enqueuer
head

tail
deqlLock \\—-’

englLock Lock eng Lock

permits

© Herlihy-Shavit

head
tail

deqlLock
enqglLock

permits

Enqueuer

m
(IN

© Herlihy-Shavit

Ol 3— [N

25

Enqueuer

head

tail

deqlLock

enqglLock

—
— 0= =
_——

© Herlihy-Shavit

head
tail

deqlLock
enqglLock

permits

Enqueuer

m
(IN

© Herlihy-Shavit

Ol 3— [N

26

Enqueuer

head

tail

deqlLock
No need to

englock lock tail

permits

© Herlihy-Shavit 26

Enqueuer
head

tail

enqglLock

permits

© Herlihy-Shavit 27

Enqueuer

tail

enqglLock

Enqueue Node
permits a

© Herlihy-Shavit 27

Enqueuer

tail

enqglLock

permits

© Herlihy-Shavit

Enqueuer

head
tail

deqlLock
enqglLock

permits

getAndDecrement()

© Herlihy-Shavit 28

Enqueuer

tail

enqglLock

permits

© Herlihy-Shavit

Enqueuer
head

tail \
deqlLock \\—-’

enqglLock

permits 6

Release lock

© Herlihy-Shavit 29

Enqueuer

tail

enqlLock

permits 6

© Herlihy-Shavit

Enqueuer

head F

tail

endkock If queue was empty,
permits 6 nOt]fy Wa]t]ng
dequeuers
J

© Herlihy-Shavit 30

Unsuccesful Enqueuer
head

tail
deqlLock \\—-’

englLock Read permits

permits 0

] ®

© Herlihy-Shavit 31

Unsuccesful Enqueuer

head

tail

deqglLock
enqlock

permits

- - —b

© Herlihy-Shavit 31

Dequeuer

head

tail

deqglLock
enqlLock

permits

© Herlihy-Shavit 32

Dequeuer

tail
deqglLock -
enqlLock
Lock deqglock
permits
J

© Herlihy-Shavit 32

Dequeuer

tail
deqglLock -
enqlLock Read sentinel’s next
| field
permits
J

© Herlihy-Shavit 33

Dequeuer

head
tail
deqglLock
\\
enqlLock \\Read sentinel’s next
\ .
| N field

permits \

‘

J

© Herlihy-Shavit 33

Dequeuer

head

tail

deqglLock
enqlLock

permits

© Herlihy-Shavit 34

Dequeuer

head

tail

deqglLock
enqlLock

permits

© Herlihy-Shavit 34

Dequeuer

- }—@B— O3
CH

tail

deqlLock

enqlock

permits

. J

O

© Herlihy-Shavit 35

Make first Node
new sentinel

Dequeuer
head [@‘ h
tail
deqlLock [G‘]
enqlock
permits
O
J

© Herlihy-Shavit 35

Dequeuer

" Cp

o

deqlLock

enqlock

permits

Release
deqglLock

© Herlihy-Shavit 36

Dequeuer

" Cp
deqLock \\._, [G‘]

enqlock

permits

O
Release
deqglLock
_)

© Herlihy-Shavit 36

Dequeuer

-
head [@‘ I)
tail
deqglLock [G‘]
enqgLock Increment
ermits permits

O
_J

© Herlihy-Shavit 37

Unsuccesful Dequeuer

oN

tail

deqglLock
enqLock Read sentinel’s next
| field
permits
J

© Herlihy-Shavit 38

Unsuccesful Dequeuer

[—_— -
head

tail

deqglLock

enqgLock \\Read sentinel’s next
\ .
| M field
permits
. J

© Herlihy-Shavit 38

Bounded Queue

public class BoundedQueue<T>{
ReentrantLock englLock, deglLock;
Condition notEmptyCondition, notFullCondition;
Atomiclnteger permits;
Node head;
Node tail;
int capacity;
englLock = new ReentrantLock();
notFullCondition = enqLock.newCondition();
deglLock = new ReentrantLock();
notEmptyCondition = degLock.newCondition();

Bounded Queue

public class BoundedQueue<T> {

Condition notEmptyConditiqn, notFMICondition;
Atomiclnteger permits;
Node head;

Nods tail: Eng & deq locks
Int capacity;

englLock = new ReentrantLock();

notFullCondition = engLock.newCondition();

deglLock = new ReentrantLock();

notEmptyCondition = deqLock.newCondition();

Monitor Locks

e The Reentrant Lock is a monitor

« Allows blocking on a condition rather than
spinning

e Threads:
acquire and release lock
wait on a condition

© Herlihy-Shavit 41

Java Monitor Locks

public interface Lock {

void lock();

void locklInterruptibly() throw InterruptedException;
boolean tryLock();

boolean tryLock(long time, TimeUnit unit);
Condition newCondition();

void unlock();

}

© Herlihy-Shavit

42

Java Locks

Acquire lock

© Herlihy-Shavit

43

Java Locks

i Release lock
V 1 .

© Herlihy-Shavit

44

Java Locks

Conditions to wait on

I

L, U

[Condition newCondition();]

© Herlihy-Shavit

45

Lock Conditions

public interface Condition {
void await()
throws InterruptedException;
boolean await(long time, TimeUnit unit)
throws InterruptedException;

void signal();

void signalAll();
Y

© Herlihy-Shavit

46

Lock Conditions

oid await()

Release lock and
wait on condition

© Herlihy-Shavit

47

Lock Conditions

Qﬂ signal(): j\

void signalAll();

Signal release of
next thread in line or
all awaiting threads

© Herlihy-Shavit 48

The await() Method

g.await()

e Releases lock on q

e Sleeps (gives up processor)
e Awakens (resumes running)
e Reacquires lock & returns

© Herlihy-Shavit

49

The signal() Method

g.signal();

o Awakens one waiting thread
e Which will reacquire lock
e Then returns

© Herlihy-Shavit

50

The signalAll() Method

g.signalAll();

o Awakens all waiting threads
e Which will reacquire lock
e Then returns

© Herlihy-Shavit

51

L

A Monitor Lock

waiting room

&[]

Critical Section

© Herlihy-Shavit

52

L

A Monitor Lock

waiting room

&[]

Critical Section

© Herlihy-Shavit

52

A Monitor Lock

waiting room

&[]

Critical Section

© Herlihy-Shavit

52

A Monitor Lock

waiting room

&[]

Il v e

Critical Section

© Herlihy-Shavit

52

L

A Monitor Lock

waiting room

&[]

Critical Section

© Herlihy-Shavit

52

Awaiting a Condition

waiting room

&[]

Critical Section

© Herlihy-Shavit

53

Awaiting a Condition

waiting room

&[]

Critical Section

© Herlihy-Shavit

53

Awaiting a Condition

waiting room

&[]

Critical Section

© Herlihy-Shavit

53

Awaiting a Condition

waiting room

&[]

Critical Section

© Herlihy-Shavit

53

Awaiting a Condition

waiting room

O&F |

Critical Section

© Herlihy-Shavit

53

o

Critical Section

iting a Condition

waiting room

O&F |

© Herlihy-Shavit

53

Awaiting a Condition

waiting room

O&F |

Critical Section

© Herlihy-Shavit

53

Awaiting a Condition

waiting room

Critical Section

© Herlihy-Shavit

53

Awaiting a Condition

waiting room

2 YL

Critical Section

© Herlihy-Shavit

53

Monitor Signalling

waiting room

S B

Critical Section

© Herlihy-Shavit

54

Monitor Signalling

waiting room

S B

Critical Section

© Herlihy-Shavit

54

Monitor Signalling

waiting room

S B

Critical Section

© Herlihy-Shavit

54

Monitor Signalling

waiting room

R |

=

Critical Section

© Herlihy-Shavit

54

Monitor Signalling

waiting room

S B

Critical Section

© Herlihy-Shavit

54

Monitor Signalling

waiting room

S B

Critical Section

© Herlihy-Shavit

54

Monitor Signalling

waiting room

S B

Critical Section

© Herlihy-Shavit

54

Monitor Signai

waiting room

S B

Critical Section

© Herlihy-Shavit

54

Monitor Signai

waiting room

&&= |
=

Critical Section

© Herlihy-Shavit

54

Monitor Signai

waiting room

&&= |
=

Notice, woken thread
might still loose lock to
outside contender...

Critical Section

© Herlihy-Shavit 54

Monitor Signaling All

waiting room

S B

Critical Section

£4

© Herlihy-Shavit

55

Monitor Signaling All

waiting room

S B |
o

Critical Sectioii

© Herlihy-Shavit

55

Any one of
us can try
to enter

Monitor Signaliy

Critical Section

© Herlihy-Shavit 55

Any one of
us can try

Monitor Signaliy

Critical Section

© Herlihy-Shavit 55

Java Synchronized Monitor

- await() is wait()
- signal() is notify()
- signalAll() is notifyAll()

© Herlihy-Shavit

56

Back to our Bounded Queue

public class BoundedQueue<T>{
ReentrantLock englLock, deglLock;
Condition notEmptyCondition, notFullCondition;
Atomiclnteger permits;
Node head;
Node tail;
int capacity;
englLock = new ReentrantLock();
notFullCondition = enqLock.newCondition();
deglLock = new ReentrantLock();
notEmptyCondition = degLock.newCondition();

Bounded Queue

[ReentrantLock englLock, deqlock;

Enq & deq locks

© Herlihy-Shavit

58

Bounded Queue

Reentrant.lock can have a condition

for threads to wait on

| >

notFullCondition = englLock.newCondition();

© Herlihy-Shavit

59

Bounded Queue

Num of permits ranges from 0 to capacity

[Atomiclnteger permits; (

© Herlihy-Shavit 60

Bounded Queue

Node head:;
Node tail;

]/Head and Tail

© Herlihy-Shavit

61

Bounded Queue Enq ()Part 1

public void enqg(T x) {
boolean mustWakeDequeuers = false;
englLock.lock();
try {
while (permits.get() == 0K
try {notFullCondition.await();}

}

Node e = new Node(x);
tail.next = e;

tail = e;

iIf (permits.getAndDecrement() == capacity) {
mustWakeDequeuers = true;
Y
} finally {
englLock.unlock();

}

Bounded Queue Enq () Part 1

EenqLock.Iock(); L

o Lock enq lock

Bounded Queue Enq () Part 1

while (permits.get() == 0){
try {notFullCondition.await()}

permits = 0 wait till
notFullCondition becomes true
then check permits again...

Bounded Queue Enq () Part 1

Node e = new Node(x);
tail.next = e;
tail = e;

Add a new node

Bounded Queue Enq () Part 1

If | was the enqueuer that changed
queue state from empty to none-empty will
need to wake dequeuers

N\

iIf (permits.getAndDecrement() == capacity) { j
mustWakeDequeuers = true;

Bounded Queue Enq () Part 1

Release the enq lock

[engLock.unlock();

Bounded Queue Enq () Part 1

public void enqg(T x) {
boolean mustWakeDequeuers = false;
englLock.lock();
try {
while (permits.get() == 0K
try {notFullCondition.await();}

}

Node e = new Node(x);
tail.next = e;

tail = e;

iIf (permits.getAndDecrement() == capacity) {
mustWakeDequeuers = true;
Y
} finally {
englLock.unlock();

}

Bounded Queue Enq () Part 2

public void enq(T x) {

if (mustWakeDequeuers) {
deglLock.lock();

try {
notEmptyCondition.signalAli();

}finally {
degLock.unlock();

}
}
}

© Herlihy-Shavit

68

Bounded Queue Enqg () Part 2

if (mustWakeDequeuers) {
deglLock.lock();

To let the dequeuers know that the
queue is non-empty, acquire deqlLock

© Herlihy-Shavit

69

Bounded Queue Enqg () Part 2

ElotEmptyCondition.signaIAII(); j

S

Signal all dequeuers waiting that
they can attempt to re-acquire deqlock

© Herlihy-Shavit

70

Bounded Queue Enq () Part 2

/

[degLock.unlock(); |

Release deqlock

© Herlihy-Shavit

71

The Shared Counter

e The eng() and deqg () methods

Don’t access the same lock
concurrently

But they still share a counter

Which they both increment or
decrement on every method call

Can we get rid of this bottleneck?

© Herlihy-Shavit

72

Split the Counter

e The eng () method
Decrements only
Cares only if value is zero
e The deg () method
Increments only
Cares only if value is capacity

© Herlihy-Shavit

73

Split Counter

e Enqueuer decrements engSidePermits
e Dequeuer increments degSidePermits
« When enqueuer runs out of space

Locks degLock

Transfers permits
e Intermittent synchronization

Not with each method call

Need both locks! (careful ...)

74

A Lock-Free Queue

~\

© Herlihy-Shavit

A Lock-Free Queue

e — BN

© Herlihy-Shavit

75

A Lock-Free Queue

© Herlihy-Shavit

75

A Lock-Free Queue

-1 —EN

tail

Sentinel

© Herlihy-Shavit

Compare and Set

2>

© Herlihy-Shavit

Enqueue Step One

Enqueue Node

@

© Herlihy-Shavit 77

Enqueue Step One

Enqueue Node

@

© Herlihy-Shavit 77

Enqueue Step Two

Enqueue Node

@

© Herlihy-Shavit 78

Enqueue Step Two

==

head

tail

Enqueue Node

@

© Herlihy-Shavit 78

Enqueue

e These two steps are not atomic

e The tail field refers to either
Actual last Node (good)
Penultimate Node (not so good)

© Herlihy-Shavit

79

Enqueue

e What do you do if you find
A trailing tail?
e Stop and fix it

If node pointed to by tail has non-null
next field

CAS the queue’s tail field to tail.next

© Herlihy-Shavit 80

When CASs Fail

e In Step One (logical enqueue)
Retry loop
Method still lock-free (why?)
e In Step Two (physical enqueue)
lgnore it (why?)

© Herlihy-Shavit 81

Dequeuer

s }—@3— B

)

o

© Herlihy-Shavit 82

Dequeuer

head

tail

© Herlihy-Shavit 82

Dequeuer

head

tail

© Herlihy-Shavit 82

Dequeuer

s }—@3— B

)

O

Jo W

© Herlihy-Shavit 83

Make first Node

new sentinel
Dequeuer

- S

o

O

@

© Herlihy-Shavit 83

Memory Reuse?

e What do we do with nodes after we
dequeue them?

o Java: let garbage collector deal?

e Suppose there isn’t a GC, or we don’t
want to use it?

© Herlihy-Shavit

84

Dequeuer

s }—@3— B3

)

O

J

© Herlihy-Shavit 85

Dequeuer

tail

Can recycle

O

)W

© Herlihy-Shavit 85

Simple Solution

e Each thread has a free list of unused
queue nodes

e Allocate node: pop from list
e Free node: push onto list
e Deal with underflow somehow ...

© Herlihy-Shavit

86

Why Recycling is Hard

head tail

\ L] —] _— L] —] _— L] —] _— L] ’

© Herlihy-Shavit 87

Why Recycling is Hard

head

tail

Want to
rediret
head
from grey
to red

u] —] _—] —] _—] —] _— n

© Herlihy-Shavit 87

L 4
s = s 2 = 5 =m B

Why Recycling is Hard

head tail

\ L] —] _— L] —] _— L] —] _— L] ’

© Herlihy-Shavit 87

Why Recycling is Hard

head tail

© Herlihy-Shavit 87

Why Recycling is Hard

head tail

© Herlihy-Shavit 87

Why Recycling is Hard

head tail

© Herlihy-Shavit 87

Why Recycling is Hard

head tail

© Herlihy-Shavit 88

Why Recycling is Hard

head tail

© Herlihy-Shavit 88

Why Recycling is Hard

head tail

© Herlihy-Shavit 89

Why Recycling is Hard

head tail

OK,
here
| go!

© Herlihy-Shavit 90

Why Recycling is Hard

head

tail

OK,
here
| go!

© Herlihy-Shavit 90

Final State

head tail

© Herlihy-Shavit 91

Final State

head tail

What went wrong?

© Herlihy-Shavit 91

Final State

head tail

What went wrong?

© Herlihy-Shavit 91

The Dreaded ABA Problem

Head pointer has value A
Thread reads value A

© Herlihy-Shavit

92

Dreaded ABA continued

Head pointer has value B
Node A freed

-

© Herlihy-Shavit

93

Dreaded ABA continued

Head pointer has value B
Node A freed =

© Herlihy-Shavit

93

Dreaded ABA continued

| Head pointer has value A again
Node A recycled & reinitialized

© Herlihy-Shavit 94

Dreaded ABA continued

CAS succeeds because pointer matches
even though pointer’s meaning has changed

TI @ I

© Herlihy-Shavit 95

Dreaded ABA continued

head ail

CAS succeeds because pointer matches
even though pointer’s meaning has changed

TI @ I

© Herlihy-Shavit 95

The Dreaded ABA Problem

e Is a result of CAS () semantics (Sun, Intel,
AMD)

e Does not arise with Load-Locked/Store-
Conditional (IBM)

store conditional fails if memory
location was updated since load-locked
operation

© Herlihy-Shavit 96

Dreaded ABA - A Solution

e Tag each pointer with a counter
e Unique over lifetime of node
e Pointer size vs word size issues
e Overflow?
Don’t worry be happy?
Bounded tags?
o AtomicStampedReference class

© Herlihy-Shavit

97

A Concurrent Stack

e Add() and Remove() of Stack are called
push () and pop()

e A Stack is a pool with LIFO order on
pushes and pops

© Herlihy-Shavit

98

Unbounded Lock-free Stack

[Top ﬂ-» It

© Herlihy-Shavit

99

Unbounded Lock-free Stack

[Top ﬂ-» It
o

o

© Herlihy-Shavit 100

Push ()

© Herlihy-Shavit 101

Top

Push ()

"

© Herlihy-Shavit

104

Push()

(3N

"

© Herlihy-Shavit 105

© Herlihy-Shavit 107

Top

Push()

"

© Herlihy-Shavit

108

Pop ()

(-3 —eB-CB-6n

"

© Herlihy-Shavit 109

© Herlihy-Shavit 110

Pop()

© Herlihy-Shavit 112

© Herlihy-Shavit 113

Lock-free Stack

public class LockFreeStack {
private AtomicReference top = new
AtomicReference(null);

public boolean tryPush(Node node){
Node oldTop = top.get();
node.next = oldTop;
return(top.compareAndSet(oldTop, node))
}
public void push(T value) {
Node node = new Node(value);
while (true) {
if (tryPush(node)) {
return;
} else
backoff.backoff()

}

Lock-free Stack

public booIeEtryPush(Node node){ |

Push uses tryPush () method

© Herlihy-Shavit 115

Lock-free Stack

E Node node = new Node(value); |

Create a new node

© Herlihy-Shavit 116

Lock-free Stack

Then try to push:
if tryPush ()
fails back-off
before retrying

~ while (true) { /\\

N—

if (tryPush(node)) {
return;

} else
backoff.backoff()

© W-Shavit

s

117

Lock-free Stack

Epublic boolean tryPush(Node node){ |

tryPush () attempts to push a node at top

© Herlihy-Shavit 118

Lock-free Stack

ENode oldTop = top.get(); _j

Read top value

© Herlihy-Shavit 119

Lock-free Stack

[node.next = oldTop;

current top will be new node’s successor

© Herlihy-Shavit 120

Lock-free Stack

E return(top.compareAndSet(oldTop, node)) j

Try to swing top to point at my new node

© Herlihy-Shavit 121

Lock-free Stack

e Good: No locking

e Bad: if no GC then ABA as in queue (add
time stamps)

e Bad: Contention on top (add backoff)
e Bad: No parallelism

e Is a stack inherently sequential?

© Herlihy-Shavit 122

Elimination-Backoff Stack

e How to “turn contention into parallelism”
e Replace regular exponential-backoff

o with an alternative elimination-backoff
mechanism

© Herlihy-Shavit 123

Observation

e

Push(@®)

linearizable stack

Pop()

s

© Herlihy-Shavit 124

Observation

e

Push()

linearizable stack

Pop()

s

© Herlihy-Shavit 124

Observation

e

Push()

linearizable stack

Pop(@)

s

© Herlihy-Shavit 124

Observation

e

Push()

linearizable stack

Pop(@)

After any equal number
of pushes and pops,
stack stays the same

© Herlihy-Shavit 124

ldea: Elimination Array

Push@)

Pop()

s

stack

Elimination
Array

© Herlihy-Shavit

125

Push Collides With Pop

e

Push(@®)

stack

Pop()

s

© Herlihy-Shavit 126

Push Collides With Pop

e

Push(@®)

stack

Pop()

s

© Herlihy-Shavit 126

Push Collides With Pop

e

Push()

stack

Pop@

s

© Herlihy-Shavit 126

Push Collides With Pop

e

Push()

stack

Pop@

s

© Herlihy-Shavit 126

Push Collides With Pop

e

Push()

stack

Pop@

No need to
access stack

© Herlihy-Shavit 126

No Collision

4

Push@)

stack

Pop()

s

© Herlihy-Shavit 127

No Collision

4

Push()

stack

Pop()

s

© Herlihy-Shavit 127

No Collision

4

Push() stack

Pop()

s

© Herlihy-Shavit 127

No Collision

4

Push()

stack

Pop()

s

© Herlihy-Shavit 127

No Collision

4

Push()

stack

Pop()

s

© Herlihy-Shavit 127

No Collision

4

Push()

stack

Pop@®

s

© Herlihy-Shavit 127

No Collision

4

Push()

stack

Pop@®

If no collision,
access stack

© Herlihy-Shavit 127

No Collision

4

Push()

stack

Pop@®

If pushes collide
or pops collide
access stack

© Herlihy-Shavit 127

Elimination-Backoff Stack

» Lock-free stack + elimination array
o Access Lock-free stack,
- If uncontended, apply operation

- if contended, back off to elimination
array and attempt elimination

© Herlihy-Shavit 128

Elimination-Backoff Stack

Push@) I

Pop()

s

© Herlihy-Shavit 129

Elimination-Backoff Stack

Push@) I

Pop()

s

© Herlihy-Shavit 129

Elimination-Backoff Stack

(% h []
Push@) l

Pop()

s

1> @B-G3-8

© Herlihy-Shavit 129

Dynamic Range and Delay

Pick range and max time
to wait for collision based
on level of

contention encountered

© Herlihy-Shavit 130

Dynamic Range and Delay

Pick range and max time
to wait for collision based
on level of

contention encountered

© Herlihy-Shavit 130

Dynamic Range and Delay

Pick range and max time
to wait for collision based
on level of

contention encountered

© Herlihy-Shavit 130

Linearizability

 Un-eliminated Lock-free stack calls:
linearized as before
 Eliminated calls:

linearize push () immediately before
the pop () at the collision point

e Combination is a linearizable stack

© Herlihy-Shavit 131

Linearizability

push(x) push(y) pop:y POpP:X

L I 1

137

Linearizability

push(x) push(y) pop:y POpP:X
stack eliminated stack
< push
< >

pPop

138

Linearizability

push(x) pop:x push(y) pop:y
stack , \/
eliminated
< push
< >

pop

139

Backoff Has Dual Effect

e Elimination introduces parallelism

e Backoff onto array cuts contention on
lock-free stack

cuts down total number of threads
ever accessing lock-free stack

© Herlihy-Shavit

132

Elimination Array

public class EliminationArray {

private static final int duration = ...;

private static final int timeUnit = ...;

Exchanger<T>[] exchanger;

Random random;

public EliminationArray(int capacity) {
exchanger = (Exchanger<T>[]) new

Exchanger|[capacity];
for (inti = 0; i < capacity; i++) {
exchanger[i] = new Exchanger<T>();

}

random = new Random();

}

© Herlihy-Shavit 133

Elimination Array

public class EliminationArray {
private static final int duration = ...;
private static final int timeUnit = ...;
Exchanger<T>[] exchanger;

Random random:
public EliminationArray(int capacity) { N

exchanger = (Exchanger<T>[]) new
Exchanger[capacity];
for (inti = 0; i < capacity; i++) {
exchanger[i] = new Exchanger<T>();

\ia'ndem—new-ﬂaﬁdem"'
} , \//

- An array of exchangers

© Herlihy-Shavit 134

A Lock-Free Exchanger

public class Exchanger<T> {
AtomicStampedReference<T> slot = new
AtomicStampedReference<T>(null, 0);

© Herlihy-Shavit 135

A Lock-Free Exchanger

public class Exchanger<T>{
[AtomicStampedReference<T> slot = new |
AtomicSampedRéference<T>(null, 0);

Slot holds atomically modifiable reference
and time stamp

© Herlihy-Shavit 136

Atomic Stamped Reference

o AtomicStampedReference class

Java.util.concurrent.atomic

package

Reference —

-
L
‘Laddress]
_

BN

© Herlihy-Shavit

Stamp

137

Extracting Reference & Stamp

public T get(int[] stampHolder);

© Herlihy-Shavit 138

Extracting Reference & Stamp

Public T int[] stampHolder

Returns Returns stamp at
reference to array index 0!
object of

type T

© Herlihy-Shavit 139

The Exchange

public T Exchange(T myltem, long nanos) throws
TimeoutException {
long timeBound = System.nanoTime() + nanos;
int[] stampHolder = {0};
while (true) {
if (System.nanoTime() > timeBound)
throw new TimeoutException();
T herltem = slot.get(stampHolder);
int stamp = stampHolder|[0];
switch(stamp % 3) {
case 0: // slot is free
case 1: // someone waiting for me
case 2. // others exchanging

}
b

© Herlihy-Shavit 140

The Exchange

I:public T Exchange(T myltem, long nanos) throws j
TimeoutException {
long timeBound = System.nanoTirke() + nanos;
int[] stampHolder = {0};
while (true) {
if (System.nanoTime() > timeBound)
throw new TimeoutException();
T herltem = slot.get(stampHolder);
int stamp = stampHolder[0];
switch(stamp % 3) {
2222 ?; Input item and max time to
case 2: /waitsforrexchange before

; timing out

b

© Herlihy-Shavit 141

The Exchange

int[] stampHolder = {0};

if (System.nanoTime

throw new TimeoutExceptio
T herltem = slot.get(stampHolder);
int stamp = stamopHolderl0l:

switch(stampArray to hold extracted

case 0: // slps
case 1: // ¢ timestamp

case 2. // others exchanging

}
b

und)

© Herlihy-Shavit

142

The Exchange

public T Exchange(T myltem, long nanos) throws
TimeoutException {
long timeBound = System.nanoTime() + nanos;
int[] stampHolder = {0};
e (true) {
if (System.nanoTime() > timeBound)
throw new TimeoutException();

int stamp = s’rarr.mHoIder[m:
switch(stampl_oop as long as time to

case O /] < attempt exchange does not
case 1: // ¢

case 2: // oFUN QUL

}
b

© Herlihy-Shavit 143

The Exchange

[~ ==, ~ ~7T r—~=n A~ =~ [=~r~ 1 r=~r=~r=—~—=\ Y= =anrn

public T Exc | OWS
TimeoutExce @€t others item and time-

long timel stamp
int[] stamg

while (true) {
if (System.nanoTime() > tim¢Bou
throw new TimeoutExceptipn();
T herltem = slot.get(stampHolder);
int stamp = stampHolder[0]; :I
/A

case 0: // slot is free
case 1: // someone waiting for me
case 2. // others exchanging

}
b

© Herlihy-Shavit 144

The Exchange

public T Exchange(T mExchanger-slot°has three

TimeoutException { .
e states determined by the

int[] stampHolder = {timestamp mod 3
while (true)d
if (Syste noTime() > timeBound)
throw plew TN\meoutException();
T herltgm = slo\get(stampHolder);
int st older|O];
switch(stamp % 3) { N
case 0: // slot is free
case 1: // someone waiting for me
case 2: // others exchanging

U -

)

© Herlihy-Shavit 145

Lock-free Exchanger

Slot

0%

‘ item stamp/state

© Herlihy-Shavit 146

Lock-free Exchanger

Slot

item stamp/state

e ?.ooe

© Herlihy-Shavit

146

Lock-free Exchanger

Slot

item stamp/state

Q‘@.ooe

© Herlihy-Shavit

146

Lock-free Exchanger

Slot

0%

item stamp/state

© Herlihy-Shavit 147

Lock-free Exchanger

State changed
to 1 wait for
someone to

appear...

O
3

Slot

item stamp/state

© Herlihy-Shavit 147

Lock-free Exchanger

%

O
?-

item stamp/state

Still waiting for
someone to
appear...

© Herlihy-Shavit

148

Try to exchange
item and set
state to 2

Lock-free E

Still waiting for
someone to
appear...

item stamp/state

© Herlihy-Shavit 148

Try to exchange
item and set
state to 2

Lock-free E

Still waiting for
someone to
appear...

item stamp/state

© Herlihy-Shavit 148

Lock-free Exchanger

2

g

item stamp/state

© Herlihy-Shavit 149

Lock-free Exchanger

Slot

0%

item stamp/state

© Herlihy-Shavit 149

Lock-free Exchanger

2 means someone
showed up, take
item and reset to

Slot

item stamp/state

© Herlihy-Shavit 149

Lock-free Exchanger

Slot

0%

item stamp/state

© Herlihy-Shavit 150

Lock-free Exchanger

Read item and
increment
timestamp to

Slot

item stamp/state

© Herlihy-Shavit 150

Lock-free Exchanger

Read item and
increment
timestamp to

item stamp/state

© Herlihy-Shavit 150

Lock-free Exchanger

Read item and
increment
timestamp to

Slot
O
o
! /
item stamp/state

© Herlihy-Shavit 150

Lock-free Exchanger

Read item and
increment
timestamp to

Slot

item stamp/state

© Herlihy-Shavit 150

Exchanger State O

case 0: // slot is free
if (slot.compareAndSet(herltem, myltem, stamp, stamp + 1)) {
while (System.nanoTime() < timeBound){
herltem = slot.get(stampHolder);
if (stampHolder[0] == stamp + 2) {
slot.set(null, stamp + 3);
return herltem;
b3
if (slot.compareAndSet(myltem, null, stamp + 1, stamp)) {throw new
TimeoutException();
}else {
herltem = slot.get(stampHolder);
slot.set(null, stamp + 3);
return herltem;
¥

} break;
© Herlihy-Shavit 151

Exchanger State O

0O // <lot is free

if (slot.compareAndSet(herltem, myltem, stamp, stamp + 1)) { j

while (System.nanoTime() < timeBound){
= slot.get(stampiotdery;
older[0] == sfamp + 2) {

I, stamp +/3);

if (stam
slot.set(
return her
b3
if (slot.compareAadSgt(myltem, null, stamp + 1, stamp)) {throw new
TimeoutException();
} else {

herltem = ot is'free, try and insert
slot.set(nt

oturn herMyltem and change state to

} 1
} break;
© Herlihy-Shavit 152

Exchanger State O

case 0: // slot is free

if mp + 1)) {
while (System.nanoTime() < timeBound){

herlten\ = slot.get(stampHolder);
if (stam = stamp + 2) {
slot.set(nyll, stamp + 3);

return her
b3
if (slot.compare
TimeoutException();
} else {

herltem = 1 igop ‘While’still time left to
slot.set(nt

eturn her EFY @and exchange

Y
} break;

Set(myltem, null, stamp + 1, stamp)) {throw new

© Herlihy-Shavit 153

Exchanger State O

case 0: // slot is free
if (slot.compareAndSet(herltem, myltem, stamp, stamp + 1)) {
while (System.nanoTime() < timeBound)

herltem = slot.get(stampHolder); I

if (stampHolder[0] == stamp + 2) {

slot.

t(null, stafp + 3);

return
b3
if (slot.compar&nd®et(myltem, null, stamp + 1, stamp)) {throw new
TimeoutException();
} else {
herltem = Gatjtem and 'stamp in slot
slot.set(n .
eturn her@anRd check if state changed
} to 2
} break;

© Herlihy-Shavit 154

Exchanger State O

case 0: // slot is free
if (slot.compareAndSet(herltem, myltem, stamp, stamp + 1)) {
while (System.nanoTime() < timeBound){

herltem = slot.get(stampHolder);
i ==stamp + 2) {

amp + 3); :I

slot.set(null, st

if (slot.compar
TimeoutException();
}else {
herltem = 1P sjccessfiil reset slot state
slot.set(nt
return her to 0

Y
} break;

Set(myltem, null, stamp + 1, stamp)) {throw new

© Herlihy-Shavit 155

Exchanger State O

case 0: // slot is free
if (slot.compareAndSet(herltem, myltem, stamp, stamp + 1)) {
while (System.nanoTime() < timeBound){
herltem = slot.get(stampHolder);
if (stampHolder[0] == stamp + 2) {
slot.set(null, stamp + 3);
Ereturn herltem;
3
if (slot.compare et(myltem, null, stamp + 1, stamp)) {throw new
TimeoutException();
} else {
herltem = and°return”item found in
slot.set(n
return her slot

Y
} break;

© Herlihy-Shavit 156

Exchanger State O

case 0:// slot is free)
if (slot.compareAnQtherwise we ran-out-of

while (System.nartime, try-andreset state to

herltem = slot.ge . .
f (stampHolder(c 0, if successful time out

slot.set(null, stginp + 2,
retuwweﬁ;\
1

I: if (slot.compareAndSet(myltem, null, stamp + 1, stamp)) {throw neﬂ
TimeoutException();
} else {
herltem = slot.get(stampHolder);
slot.set(null, stamp + 3);
return herltem:;

Y
} break;

© Herlihy-Shavit 157

Exchanger State O

case 0: // slot is free
It (slot.compareAnds {f reset failed can only be

while (System.nanol
herltem = slot.get(s ENAt.someone showed up

if (stampHolder[0] =after all, take her item
slot.set(null, stamy
retuyn\oerltem;

herltem = slot.get(stampHolder); :l
slot.set(null, stamp + 3);
return herltem:;

Y
} break;

© Herlihy-Shavit 158

Exchanger State O

case 0: // slot is free

if (slot.compareAndSet(herltem, myltem, stamp, stamp -
while (System.naro€t slot to-0 with new time

herltem = slotgestamp'@nd return the item

if (stampHolder|
slot.set(null, st found

return herltem:;

1
if (slot.
Timeout

4\\ r

mpareAndSet(myltem, null, stamp + 1, stamp)) {throw new

slot.set(null, stamp + 3);
return herltem:;

© Herlihy-Shavit 159

Exchanger State O

case 0: // slot is free
if (slot.compareAndSet(herltem, myltem, stamp, stamp + 1)) {

while (System.nanoTime() < timeBound){
herltem = <slot net(stamnHnlder):

if (stampHdf dnitial'CAS-failed then

slot-setnspmeone’ else changed slot
return he

0 from O to 1 so retry from
if (slot.compstart {throw new
TimeoutExcep
}else {
herltegp = slot.get(stampHolder);
slot.g@t(null, stamp + 3);
retdrp herltem:;

)
} break;
L

© Herlihy-Shavit 160

Exchanger States 1 and 2

case 1: // someone waiting for me
if (slot.compareAndSet(herltem, myltem, stamp, stamp + 1))
return herltem;
break;
case 2: // others in middle of exchanging
break;
default: // impossible
break;

}
}
}
}

© Herlihy-Shavit 161

Exchanger States 1 and 2

if (slot.compareAndSet(herltem, myltem, stamp, stamp +
n herltem;
break;
case 2: // otherdN
break:
default: / istate 1 means someone is

break' waiting for an exchange, so
}} attempt to CAS my Item in
} and change state to 2

Se 1: // someone walting for me :I
1)

migddle of exchanging

© Herlihy-Shavit 162

Exchanger States 1 and 2

case 1: // someone waiting for me
' ltem, myltem, stamp, stamp + 1))

e DT exchanging

defa“t')tr;;’ki [f'stccessful return her
) item, state is now 2,
} otherwise someone else
) took her item so try again

from start

© Herlihy-Shavit 163

Exchanger States 1 and 2

case 1: // someone waiting for me
if (slot.compareAndSet(herltem, myltem, stamp, stamp + 1))
return herltem;

break;

case 2: i of ex
break: .

Wr:ea - A If state is 2 then some other
break; threads are using slot to

}} exchange so start again
}
}

© Herlihy-Shavit 164

Lock-free Exchanger

Slot

0%

‘ item stamp/state

© Herlihy-Shavit 146

Lock-free Exchanger

Slot

item stamp/state

e ?.ooe

© Herlihy-Shavit

146

Lock-free Exchanger

Slot

item stamp/state

Q‘@.ooe

© Herlihy-Shavit

146

Lock-free Exchanger

Slot

0%

item stamp/state

© Herlihy-Shavit 147

Lock-free Exchanger

State changed
to 1 wait for
someone to

appear...

O
3

Slot

item stamp/state

© Herlihy-Shavit 147

Lock-free Exchanger

%

O
?-

item stamp/state

Still waiting for
someone to
appear...

© Herlihy-Shavit

148

Try to exchange
item and set
state to 2

Lock-free E

Still waiting for
someone to
appear...

item stamp/state

© Herlihy-Shavit 148

Try to exchange
item and set
state to 2

Lock-free E

Still waiting for
someone to
appear...

item stamp/state

© Herlihy-Shavit 148

Lock-free Exchanger

2

g

item stamp/state

© Herlihy-Shavit 149

Lock-free Exchanger

Slot

0%

item stamp/state

© Herlihy-Shavit 149

Lock-free Exchanger

2 means someone
showed up, take
item and reset to

Slot

item stamp/state

© Herlihy-Shavit 149

Lock-free Exchanger

Slot

0%

item stamp/state

© Herlihy-Shavit 150

Lock-free Exchanger

Read item and
increment
timestamp to

Slot

item stamp/state

© Herlihy-Shavit 150

Lock-free Exchanger

Read item and
increment
timestamp to

item stamp/state

© Herlihy-Shavit 150

Lock-free Exchanger

Read item and
increment
timestamp to

Slot
O
o
! /
item stamp/state

© Herlihy-Shavit 150

Lock-free Exchanger

Read item and
increment
timestamp to

Slot

item stamp/state

© Herlihy-Shavit 150

Our Exchanger Slot

e Notice that we showed a general lock-
free exchanger

e Its lock-free because the only way an
exchange can fail is if others repeatedly
succeeded or no-one showed up

e The slot we need does not require
symmetric exchange

© Herlihy-Shavit 165

Elimination Array

public class EliminationArray {

public T visit(T value, int Range) throws TimeoutException {
int slot = random.nextint(Range);
int nanodur = convertToNanos(duration, timeUnit))
return (exchanger[slot].exchange(value, nanodur)

b

© Herlihy-Shavit

166

Elimination Array

public class EliminationArray {

|: public T visit(T value, int Range) throws TimeoutExceptiEh {
int slot = random.nextInt(Range)
return (exchanger[slot].exchaphge(value Aanodur))

b

visit the elimination array with a value
and a range (duration to wait is not
dynamic)

© Herlihy-Shavit 167

Elimination Array

Pick a random array entry

) Dhays

int slot = random.nextInf(Range)

© Herlihy-Shavit 168

Elimination Array

Exchange value or time out

[—

I: return (exchanger[slot].exchange(value, nanodur)) j

© Herlihy-Shavit 169

Elimination Stack Push

public void push(T value) {

while (true) {
if (tryPush(node)) {
return;
} else try {
T otherValue =
eliminationArray.visit(value,policy.Range);
if (otherValue == null) {
return;

}
}

© Herlihy-Shavit 170

Elimination Stack Push

I: if (tryPush(node)) {

return;

First try to push

© Herlihy-Shavit 171

Elimination Stack Push

If failed back-off to try and eliminate

/\

}else try {
T otherValue =
liminationArray.visit(value,policy.Range);

© Herlihy-Shavit 172

Elimination Stack Push

Value being pushed and range to try

(value,policy.Range); j

© Herlihy-Shavit 173

Elimination Stack Push

Only a pop has null value
so elimination was successful

if (otherValue == null) {
return;

© Herlihy-Shavit 174

Elimination Stack Push

__f’b"c Else retry push on lock-free stack
while (true) {
if (tryPush(node)) {
return;
}else try {

ay.visit(value,policy.Range);
lue == null) {

© Herlihy-Shavit

175

Elimination Stack Pop

public T pop() {

while (true) {
if (tryPop()) {
return returnNode.value;
} else
try {
T otherValue = eliminationArray.visit(null,policy.Range);
if (otherValue != null) {
return otherValue;

}
}
b

© Herlihy-Shavit 176

Elimination Stack Pop

public T pop() {
If non-null other

"i‘;h(‘t're gg“e(;){ { thread must have pushed,
retuym r‘;tumNode,va so elimination succeeds
} else

try {
erValue\=etmm

if (otherValue != null) {
return otherValue;

is(t(null,policy.Range;

© Herlihy-Shavit 177

Linearizability

push(x)

>
push(y)
< >

Pop.Yy

pOp:X

191

Linearizability

push(x)
< >
) push(y)
p T >
op:
LP < a4 >
pOp:X

192

Linearizability

push(x)
< >
) push(y)
p T >
op:
LP < b

>
T pOp:X

LP

192

Linearizability

push(x)
<

>
T push(y)
<

T >

193

Linearizability

push(x)
<

>
T push(y)
<

T >

Pop.Yy
<

<T pop:X

; .

193

Elimination

push(x)

push(y)

Pop.Yy

pOp:X

194

Elimination

push(x)

push(y) /\
/ T pop:y
Q/ pop:X
< >

eliminated

194

Elimination

push(x)

) T pushy
=N

T

\' / —

eliminated

194

Elimination

pop:Z
< >

push(x) push(z)
< > < >

push(y)

Pop.Yy

pOp:X

195

push(x)

Elimination

pop:z
< >

push()

push(y)(/T\

eliminated

195

Elimination

pop:z
>
push(x) push() T
push(y) T
/ T eliminated

Qj pop:X
< >

eliminated

195

Elimination

pop:z
>
push(x) push()I T |
<
] push(y) f
< / T eliminated

T
\/ N

eliminated

195

Number of operation

per second

8000
7000
6000
5000
4000
3000
2000
1000

Measurements

Throughput (50% push, 50% pop)

4 8 14 32
Threads

196
(14 processor sun)

Summary

e We saw both lock-based and lock-free
implementations of

queues and stacks

e Don’t be quick to declare a data structure
inherently sequential

Linearizable stack is not inherently
sequential

e ABA is a real problem, pay attention

© Herlihy-Shavit 178

