
Concurrent Queues and
Stacks

Christof Fetzer, TU Dresden

Based on slides by Maurice Herlihy
and Nir Shavit

© Herlihy-Shavit 2

Linked List Lecture

• Five approaches to concurrent data
structure design:
• Coarse-grained locking
• Fine-grained locking
• Optimistic synchronization
• Lazy synchronization
• Lock-free synchronization

© Herlihy-Shavit 3

List-based Set
• We used an ordered list to implement a

Set:
• An unordered collection of objects
• No duplicates
• Methods:

• add() a new object
• remove() an object
• Test if set contains() object

© Herlihy-Shavit 4

Course Grained Locking

a b d

c

Simple but hotspot + bottleneck

© Herlihy-Shavit 5

Fine Grained Locking

a b d

• Allows concurrency but everyone always
delayed by front guy = bottleneck

• Lock acquisition overhead

© Herlihy-Shavit 6

Optimistic List

b c ea

1. Limited Hotspots (Only at locked
Add(), Remove(), Find()
destination locations, not
traversals)

2. But two traversals
3. Yet traversals are wait-free!

© Herlihy-Shavit 7

Lazy List

a 0 0 0a b c 0e1d

Lazy Add() and Remove() + Wait-free Contains()

© Herlihy-Shavit 8

Lock-free List

a 0 0 0a b c 0e1c

1. Add() and Remove() physically remove
marked nodes

2. Wait-free contains() traverses both marked
and removed nodes

© Herlihy-Shavit 251

Performance

On 16 node shared memory machine
Benchmark throughput of Java List-based Set
algs. Vary % of Contains() method Calls.

High Contains Ratio

© Herlihy-Shavit 252

Lock-free
Lazy list

Course Grained
Fine Lock-coupling

Ops/sec (90% reads/ 10% updates)

© Herlihy-Shavit 253

Low Contains Ratio

Lock-free

Lazy list

Course Grained
Fine Lock-coupling

Ops/sec (50% reads/ 50% updates)

© Herlihy-Shavit 254

As Contains Ratio Increases

Lock-free

Lazy list

Course Grained
Fine Lock-coupling

% Contains()

© Herlihy-Shavit 9

Today: Another Fundamental
Problem

• We told you about
• Sets implemented using linked lists

• Next: queues
• Ubiquitous data structure
• Often used to buffer requests …

© Herlihy-Shavit 10

Shared Pools

• Queue belongs to broader pool class
• Pool: similar to Set but

• Allows duplicates (it’s a Multiset)
• No membership test (no contains())

© Herlihy-Shavit 11

Pool Flavors

• Bounded
• Fixed capacity
• Good when resources an issue

• Unbounded
• Holds any number of objects

© Herlihy-Shavit 12

Pool Flavors

• Problem cases:
• Removing from empty pool
• Adding to full (bounded) pool

• Blocking
• Caller waits until state changes

• Non-Blocking
• Method throws exception

© Herlihy-Shavit 13

Queues & Stacks

• Add() and Remove():
• Queue enqueue (Enq()) and dequeue

(Deq())
• Stack push (push()) and pop (pop())

• A Queue is a pool with FIFO order on
enqueues and dequeues

• A Stack is a pool with LIFO order on
pushes and pops

© Herlihy-Shavit 14

This and next Lectures...

• Bounded, Blocking, Lock-based Queue
• Unbounded, Non-Blocking, Lock-free Queue
• Examine effects of ABA problem
• Unbounded Non-Blocking Lock-free Stack
• Elimination-Backoff Stack

© Herlihy-Shavit 15

Queue: Concurrency

tail head

© Herlihy-Shavit 15

Queue: Concurrency

enq(x) y=deq()

enq() and deq()
work at different
ends of the object

tail head

© Herlihy-Shavit 16

Concurrency

enq(x)

Challenge: what if
the queue is empty

or full?

y=deq()
ta

il
head

© Herlihy-Shavit 17

Ingredients: Bounded Queue

© Herlihy-Shavit 17

Ingredients: Bounded Queue

head

© Herlihy-Shavit 17

Ingredients: Bounded Queue

head

tail

© Herlihy-Shavit 17

Ingredients: Bounded Queue

Sentinel

head

tail

© Herlihy-Shavit 18

Ingredients: Bounded Queue

head

tail

© Herlihy-Shavit 18

Ingredients: Bounded Queue

head

tail

First actual item

© Herlihy-Shavit 19

Ingredients: Bounded Queue

head

tail

© Herlihy-Shavit 19

Ingredients: Bounded Queue

head

tail

Lock out other
deq() calls

deqLock

© Herlihy-Shavit 20

Ingredients: Bounded Queue

head

tail

deqLock

© Herlihy-Shavit 20

Ingredients: Bounded Queue

head

tail

Lock out other
enq() calls

deqLock

enqLock

© Herlihy-Shavit 21

Ingredients: Not Done Yet

head

tail

deqLock

enqLock

Need to tell whether
queue is full or

empty

© Herlihy-Shavit 22

Ingredients: Not Done Yet

head

tail

deqLock

enqLock

© Herlihy-Shavit 22

Ingredients: Not Done Yet

head

tail

deqLock

enqLock

Permission to enqueue 8 items

permits

8

© Herlihy-Shavit 23

Ingredients: Not Done Yet

head

tail

deqLock

enqLock

Incremented by deq()
Decremented by enq()

permits

8

© Herlihy-Shavit 24

Enqueuer

head

tail

deqLock

enqLock

permits

8

© Herlihy-Shavit 24

Enqueuer

head

tail

deqLock

enqLock

permits

8

Lock enqLock

© Herlihy-Shavit 25

Enqueuer

head

tail

deqLock

enqLock

permits

8

© Herlihy-Shavit 25

Enqueuer

head

tail

deqLock

enqLock

permits

8

Read permits

OK

© Herlihy-Shavit 26

Enqueuer

head

tail

deqLock

enqLock

permits

8

© Herlihy-Shavit 26

Enqueuer

head

tail

deqLock

enqLock

permits

8

No need to
lock tail

© Herlihy-Shavit 27

Enqueuer

head

tail

deqLock

enqLock

permits

8

© Herlihy-Shavit 27

Enqueuer

head

tail

deqLock

enqLock

permits

8

Enqueue Node

© Herlihy-Shavit 28

Enqueuer

head

tail

deqLock

enqLock

permits

8

© Herlihy-Shavit 28

Enqueuer

head

tail

deqLock

enqLock

permits

87

getAndDecrement()

© Herlihy-Shavit 29

Enqueuer

head

tail

deqLock

enqLock

permits

87

© Herlihy-Shavit 29

Enqueuer

head

tail

deqLock

enqLock

permits

8 Release lock
7

© Herlihy-Shavit 30

Enqueuer

head

tail

deqLock

enqLock

permits

7

© Herlihy-Shavit 30

Enqueuer

head

tail

deqLock

enqLock

permits

7

If queue was empty,
notify waiting

dequeuers

© Herlihy-Shavit 31

Unsuccesful Enqueuer

head

tail

deqLock

enqLock

permits

0

Read permits

© Herlihy-Shavit 31

Unsuccesful Enqueuer

head

tail

deqLock

enqLock

permits

0

Uh-oh

Read permits

© Herlihy-Shavit 32

Dequeuer

head

tail

deqLock

enqLock

permits

7

© Herlihy-Shavit 32

Dequeuer

head

tail

deqLock

enqLock

permits

7

Lock deqLock

© Herlihy-Shavit 33

Dequeuer

head

tail

deqLock

enqLock

permits

7

Read sentinel’s next
field

© Herlihy-Shavit 33

Dequeuer

head

tail

deqLock

enqLock

permits

7

Read sentinel’s next
field

OK

© Herlihy-Shavit 34

Dequeuer

head

tail

deqLock

enqLock

permits

7

Read value

© Herlihy-Shavit 34

Dequeuer

head

tail

deqLock

enqLock

permits

7

Read value

© Herlihy-Shavit 35

Dequeuer

head

tail

deqLock

enqLock

permits

7

© Herlihy-Shavit 35

Dequeuer

head

tail

deqLock

enqLock

permits

7

Make first Node
new sentinel

© Herlihy-Shavit 36

Dequeuer

head

tail

deqLock

enqLock

permits

7
Release
deqLock

© Herlihy-Shavit 36

Dequeuer

head

tail

deqLock

enqLock

permits

7
Release
deqLock

© Herlihy-Shavit 37

Dequeuer

head

tail

deqLock

enqLock

permits

8

Increment
permits

© Herlihy-Shavit 38

Unsuccesful Dequeuer

head

tail

deqLock

enqLock

permits

9

Read sentinel’s next
field

© Herlihy-Shavit 38

Unsuccesful Dequeuer

head

tail

deqLock

enqLock

permits

9

Read sentinel’s next
field

uh-oh

© Herlihy-Shavit 39

Bounded Queue

public class BoundedQueue<T> {
 ReentrantLock enqLock, deqLock;
 Condition notEmptyCondition, notFullCondition;
 AtomicInteger permits;
 Node head;
 Node tail;
 int capacity;
 enqLock = new ReentrantLock();
 notFullCondition = enqLock.newCondition();
 deqLock = new ReentrantLock();
 notEmptyCondition = deqLock.newCondition();
}

© Herlihy-Shavit 40

Bounded Queue

public class BoundedQueue<T> {
 ReentrantLock enqLock, deqLock;
 Condition notEmptyCondition, notFullCondition;
 AtomicInteger permits;
 Node head;
 Node tail;
 int capacity;
 enqLock = new ReentrantLock();
 notFullCondition = enqLock.newCondition();
 deqLock = new ReentrantLock();
 notEmptyCondition = deqLock.newCondition();
}

Enq & deq locks

© Herlihy-Shavit 41

Monitor Locks

• The Reentrant Lock is a monitor
• Allows blocking on a condition rather than

spinning
• Threads:

• acquire and release lock
• wait on a condition

© Herlihy-Shavit 42

Java Monitor Locks

public interface Lock {
 void lock();
 void lockInterruptibly() throw InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock();
}

© Herlihy-Shavit 43

Java Locks

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock();
}

Acquire lock

© Herlihy-Shavit 44

Java Locks

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock();
}

Release lock

© Herlihy-Shavit 45

Java Locks

public interface Lock {
 void lock();
 void lockInterruptibly() throws InterruptedException;
 boolean tryLock();
 boolean tryLock(long time, TimeUnit unit);
 Condition newCondition();
 void unlock();
}

Conditions to wait on

© Herlihy-Shavit 46

Lock Conditions

public interface Condition {
 void await()
 throws InterruptedException;
 boolean await(long time, TimeUnit unit)
 throws InterruptedException;
 …
 void signal();
 void signalAll();
 }

© Herlihy-Shavit 47

Lock Conditions

public interface Condition {
 void await()
 throws InterruptedException;
 boolean await(long time, TimeUnit unit)
 throws InterruptedException;
 …
 void signal();
 void signalAll();
 }

Release lock and
wait on condition

© Herlihy-Shavit 48

Lock Conditions

public interface Condition {
 void await()
 throws InterruptedException;
 boolean await(long time, TimeUnit unit)
 throws InterruptedException;
 …
 void signal();
 void signalAll();
 }

Signal release of
next thread in line or
all awaiting threads

© Herlihy-Shavit 49

The await() Method

• Releases lock on q
• Sleeps (gives up processor)
• Awakens (resumes running)
• Reacquires lock & returns

q.await()

© Herlihy-Shavit 50

The signal() Method

• Awakens one waiting thread
• Which will reacquire lock
• Then returns

q.signal();

© Herlihy-Shavit 51

The signalAll() Method

• Awakens all waiting threads
• Which will reacquire lock
• Then returns

q.signalAll();

© Herlihy-Shavit 52

A Monitor Lock

Cr
it

ic
al

 S
ec

ti
on

waiting room

© Herlihy-Shavit 52

A Monitor Lock

Cr
it

ic
al

 S
ec

ti
on

waiting room
Lock()

© Herlihy-Shavit 52

A Monitor Lock

Cr
it

ic
al

 S
ec

ti
on

waiting room

© Herlihy-Shavit 52

A Monitor Lock

Cr
it

ic
al

 S
ec

ti
on

waiting room

unLock()

© Herlihy-Shavit 52

A Monitor Lock

Cr
it

ic
al

 S
ec

ti
on

waiting room

© Herlihy-Shavit 53

Awaiting a Condition

Cr
it

ic
al

 S
ec

ti
on

waiting room

© Herlihy-Shavit 53

Awaiting a Condition

Cr
it

ic
al

 S
ec

ti
on

waiting room
Lock()

© Herlihy-Shavit 53

Awaiting a Condition

Cr
it

ic
al

 S
ec

ti
on

waiting room

© Herlihy-Shavit 53

Awaiting a Condition

Cr
it

ic
al

 S
ec

ti
on

waiting room

await()

© Herlihy-Shavit 53

Awaiting a Condition

Cr
it

ic
al

 S
ec

ti
on

waiting room

© Herlihy-Shavit 53

Awaiting a Condition

Cr
it

ic
al

 S
ec

ti
on

waiting room

Lock()

© Herlihy-Shavit 53

Awaiting a Condition

Cr
it

ic
al

 S
ec

ti
on

waiting room

© Herlihy-Shavit 53

Awaiting a Condition

Cr
it

ic
al

 S
ec

ti
on

waiting room

await()

© Herlihy-Shavit 53

Awaiting a Condition

Cr
it

ic
al

 S
ec

ti
on

waiting room

© Herlihy-Shavit 54

Monitor Signalling

Cr
it

ic
al

 S
ec

ti
on

waiting room

© Herlihy-Shavit 54

Monitor Signalling

Cr
it

ic
al

 S
ec

ti
on

waiting room

Lock()

© Herlihy-Shavit 54

Monitor Signalling

Cr
it

ic
al

 S
ec

ti
on

waiting room

© Herlihy-Shavit 54

Monitor Signalling

Cr
it

ic
al

 S
ec

ti
on

waiting room

Signal()

© Herlihy-Shavit 54

Monitor Signalling

Cr
it

ic
al

 S
ec

ti
on

waiting room

© Herlihy-Shavit 54

Monitor Signalling

Cr
it

ic
al

 S
ec

ti
on

waiting room

unLock()

© Herlihy-Shavit 54

Monitor Signalling

Cr
it

ic
al

 S
ec

ti
on

waiting room

© Herlihy-Shavit 54

Monitor Signalling

Cr
it

ic
al

 S
ec

ti
on

waiting room

I will try to
enter

© Herlihy-Shavit 54

Monitor Signalling

Cr
it

ic
al

 S
ec

ti
on

waiting room

I will try to
enter

© Herlihy-Shavit 54

Monitor Signalling

Cr
it

ic
al

 S
ec

ti
on

waiting room

I will try to
enter

Notice, woken thread
might still loose lock to
outside contender…

© Herlihy-Shavit 55

Monitor Signaling All

Cr
it

ic
al

 S
ec

ti
on

waiting room

© Herlihy-Shavit 55

Monitor Signaling All

Cr
it

ic
al

 S
ec

ti
on

waiting room

SignalAll()

© Herlihy-Shavit 55

Monitor Signaling All

Cr
it

ic
al

 S
ec

ti
on

waiting room

Any one of
us can try
to enter

© Herlihy-Shavit 55

Monitor Signaling All

Cr
it

ic
al

 S
ec

ti
on

waiting room

Any one of
us can try
to enter

© Herlihy-Shavit 56

Java Synchronized Monitor

• await() is wait()
• signal() is notify()
• signalAll() is notifyAll()

© Herlihy-Shavit 57

Back to our Bounded Queue

public class BoundedQueue<T> {
 ReentrantLock enqLock, deqLock;
 Condition notEmptyCondition, notFullCondition;
 AtomicInteger permits;
 Node head;
 Node tail;
 int capacity;
 enqLock = new ReentrantLock();
 notFullCondition = enqLock.newCondition();
 deqLock = new ReentrantLock();
 notEmptyCondition = deqLock.newCondition();
}

© Herlihy-Shavit 58

Bounded Queue

public class BoundedQueue<T> {
 ReentrantLock enqLock, deqLock;
 Condition notEmptyCondition, notFullCondition;
 AtomicInteger permits;
 Node head;
 Node tail;
 int capacity;
 enqLock = new ReentrantLock();
 notFullCondition = enqLock.newCondition();
 deqLock = new ReentrantLock();
 notEmptyCondition = deqLock.newCondition();
}

Enq & deq locks

© Herlihy-Shavit 59

Bounded Queue

public class BoundedQueue<T> {
 ReentrantLock enqLock, deqLock;
 Condition notEmptyCondition, notFullCondition;
 AtomicInteger permits;
 Node head;
 Node tail;
 int capacity;
 enqLock = new ReentrantLock();
 notFullCondition = enqLock.newCondition();
 deqLock = new ReentrantLock();
 notEmptyCondition = deqLock.newCondition();
}

Reentrant lock can have a condition
for threads to wait on

© Herlihy-Shavit 60

Bounded Queue

public class BoundedQueue<T> {
 ReentrantLock enqLock, deqLock;
 Condition notEmptyCondition, notFullCondition;
 AtomicInteger permits;
 Node head;
 Node tail;
 int capacity;
 enqLock = new ReentrantLock();
 notFullCondition = enqLock.newCondition();
 deqLock = new ReentrantLock();
 notEmptyCondition = deqLock.newCondition();
}

Num of permits ranges from 0 to capacity

© Herlihy-Shavit 61

Bounded Queue

public class BoundedQueue<T> {
 ReentrantLock enqLock, deqLock;
 Condition notEmptyCondition, notFullCondition;
 AtomicInteger permits;
 Node head;
 Node tail;
 int capacity;
 enqLock = new ReentrantLock();
 notFullCondition = enqLock.newCondition();
 deqLock = new ReentrantLock();
 notEmptyCondition = deqLock.newCondition();
}

Head and Tail

© Herlihy-Shavit 62

Bounded Queue Enq()Part 1
public void enq(T x) {
 boolean mustWakeDequeuers = false;
 enqLock.lock();
 try {
 while (permits.get() == 0){
 try {notFullCondition.await();}
 }
 Node e = new Node(x);
 tail.next = e;
 tail = e;
 if (permits.getAndDecrement() == capacity) {
 mustWakeDequeuers = true;
 }
 } finally {
 enqLock.unlock();
 }
 …

© Herlihy-Shavit 63

Bounded Queue Enq() Part 1
public void enq(T x) {
 boolean mustWakeDequeuers = false;
 enqLock.lock();
 try {
 while (permits.get() == 0){
 try {notFullCondition.await()}
 }
 Node e = new Node(x);
 tail.next = e;
 tail = e;
 if (permits.getAndDecrement() == capacity) {
 mustWakeDequeuers = true;
 }
 } finally {
 enqLock.unlock();
 }
 …

Lock enq lock

© Herlihy-Shavit 64

public void enq(T x) {
 boolean mustWakeDequeuers = false;
 enqLock.lock();
 try {
 while (permits.get() == 0){
 try {notFullCondition.await()}
 }
 Node e = new Node(x);
 tail.next = e;
 tail = e;
 if (permits.getAndDecrement() == capacity) {
 mustWakeDequeuers = true;
 }
 } finally {
 enqLock.unlock();
 }
 …

Bounded Queue Enq() Part 1

If permits = 0 wait till
notFullCondition becomes true

then check permits again…

© Herlihy-Shavit 65

public void enq(T x) {
 boolean mustWakeDequeuers = false;
 enqLock.lock();
 try {
 while (permits.get() == 0){
 try {notFullCondition.await()}
 }
 Node e = new Node(x);
 tail.next = e;
 tail = e;
 if (permits.getAndDecrement() == capacity) {
 mustWakeDequeuers = true;
 }
 } finally {
 enqLock.unlock();
 }
 …

Bounded Queue Enq() Part 1

Add a new node

© Herlihy-Shavit 66

public void enq(T x) {
 boolean mustWakeDequeuers = false;
 enqLock.lock();
 try {
 while (permits.get() == 0){
 try {notFullCondition.await}
 }
 Node e = new Node(x);
 tail.next = e;
 tail = e;
 if (permits.getAndDecrement() == capacity) {
 mustWakeDequeuers = true;
 }
 } finally {
 enqLock.unlock();
 }
 …

Bounded Queue Enq() Part 1

If I was the enqueuer that changed
queue state from empty to none-empty will

need to wake dequeuers

© Herlihy-Shavit 67

public void enq(T x) {
 boolean mustWakeDequeuers = false;
 enqLock.lock();
 try {
 while (permits.get() == 0){
 try {notFullCondition.await()}
 }
 Node e = new Node(x);
 tail.next = e;
 tail = e;
 if (permits.getAndDecrement() == capacity) {
 mustWakeDequeuers = true;
 }
 } finally {
 enqLock.unlock();
 }
 …

Bounded Queue Enq() Part 1

Release the enq lock

© Herlihy-Shavit 62

Bounded Queue Enq() Part 1
public void enq(T x) {
 boolean mustWakeDequeuers = false;
 enqLock.lock();
 try {
 while (permits.get() == 0){
 try {notFullCondition.await();}
 }
 Node e = new Node(x);
 tail.next = e;
 tail = e;
 if (permits.getAndDecrement() == capacity) {
 mustWakeDequeuers = true;
 }
 } finally {
 enqLock.unlock();
 }
 …

© Herlihy-Shavit 68

Bounded Queue Enq() Part 2

public void enq(T x) {
 …
 if (mustWakeDequeuers) {
 deqLock.lock();
 try {
 notEmptyCondition.signalAll();
 } finally {
 deqLock.unlock();
 }
 }
 }

© Herlihy-Shavit 69

public void enq(T x) {
 …
 if (mustWakeDequeuers) {
 deqLock.lock();
 try {
 notEmptyCondition.signalAll();
 } finally {
 deqLock.unlock();
 }
 }
 }

Bounded Queue Enq() Part 2

To let the dequeuers know that the
queue is non-empty, acquire deqLock

© Herlihy-Shavit 70

public void enq(T x) {
 …
 if (mustWakeDequeuers) {
 deqLock.lock();
 try {
 notEmptyCondition.signalAll();
 } finally {
 deqLock.unlock();
 }
 }
 }

Bounded Queue Enq() Part 2

Signal all dequeuers waiting that
they can attempt to re-acquire deqLock

© Herlihy-Shavit 71

public void enq(T x) {
 …
 if (mustWakeDequeuers) {
 deqLock.lock();
 try {
 notEmptyCondition.signalAll();
 } finally {
 deqLock.unlock();
 }
 }
 }

Bounded Queue Enq() Part 2

Release deqLock

© Herlihy-Shavit 72

The Shared Counter

• The enq() and deq() methods
• Don’t access the same lock

concurrently
• But they still share a counter
• Which they both increment or

decrement on every method call
• Can we get rid of this bottleneck?

© Herlihy-Shavit 73

Split the Counter

• The enq() method
• Decrements only
• Cares only if value is zero

• The deq() method
• Increments only
• Cares only if value is capacity

74

Split Counter

• Enqueuer decrements enqSidePermits
• Dequeuer increments deqSidePermits
• When enqueuer runs out of space

• Locks deqLock
• Transfers permits

• Intermittent synchronization
• Not with each method call
• Need both locks! (careful …)

© Herlihy-Shavit 75

A Lock-Free Queue

© Herlihy-Shavit 75

A Lock-Free Queue

head

© Herlihy-Shavit 75

A Lock-Free Queue

head

tail

© Herlihy-Shavit 75

A Lock-Free Queue

Sentinel

head

tail

© Herlihy-Shavit 76

Compare and Set

CAS

© Herlihy-Shavit 77

Enqueue Step One

head

tail

Enqueue Node

© Herlihy-Shavit 77

Enqueue Step One

head

tail

Enqueue Node

© Herlihy-Shavit 78

Enqueue Step Two

head

tail

Enqueue Node

© Herlihy-Shavit 78

Enqueue Step Two

head

tail

Enqueue Node

© Herlihy-Shavit 79

Enqueue

• These two steps are not atomic
• The tail field refers to either

• Actual last Node (good)
• Penultimate Node (not so good)

© Herlihy-Shavit 80

Enqueue

• What do you do if you find
• A trailing tail?

• Stop and fix it
• If node pointed to by tail has non-null

next field
• CAS the queue’s tail field to tail.next

© Herlihy-Shavit 81

When CASs Fail

• In Step One (logical enqueue)
• Retry loop
• Method still lock-free (why?)

• In Step Two (physical enqueue)
• Ignore it (why?)

© Herlihy-Shavit 82

Dequeuer

head

tail

© Herlihy-Shavit 82

Dequeuer

head

tail

Read value

© Herlihy-Shavit 82

Dequeuer

head

tail

Read value

© Herlihy-Shavit 83

Dequeuer

head

tail

© Herlihy-Shavit 83

Dequeuer

head

tail

Make first Node
new sentinel

© Herlihy-Shavit 84

Memory Reuse?

• What do we do with nodes after we
dequeue them?

• Java: let garbage collector deal?
• Suppose there isn’t a GC, or we don’t

want to use it?

© Herlihy-Shavit 85

Dequeuer

head

tail

© Herlihy-Shavit 85

Dequeuer

head

tail

Can recycle

© Herlihy-Shavit 86

Simple Solution

• Each thread has a free list of unused
queue nodes

• Allocate node: pop from list
• Free node: push onto list
• Deal with underflow somehow …

© Herlihy-Shavit 87

Why Recycling is Hard

Free pool

head tail

© Herlihy-Shavit 87

Why Recycling is Hard

Free pool

head tail

Want to
rediret
head

from grey
to red

© Herlihy-Shavit 87

Why Recycling is Hard

Free pool

head tail

© Herlihy-Shavit 87

Why Recycling is Hard

Free pool

head tail

zzz…

© Herlihy-Shavit 87

Why Recycling is Hard

Free pool

head tail

zzz…

© Herlihy-Shavit 87

Why Recycling is Hard

Free pool

head tail

© Herlihy-Shavit 88

Why Recycling is Hard

Free pool

zzz

head tail

© Herlihy-Shavit 88

Why Recycling is Hard

Free pool

zzz

head tail

© Herlihy-Shavit 89

Why Recycling is Hard

Free pool

Yawn!

head tail

© Herlihy-Shavit 90

Why Recycling is Hard

Free pool

head tail

OK,
here
I go!

© Herlihy-Shavit 90

Why Recycling is Hard

Free pool

head tail

OK,
here
I go!

© Herlihy-Shavit 91

Final State

Free pool

head tail

© Herlihy-Shavit 91

Final State

Free pool

What went wrong?

head tail

© Herlihy-Shavit 91

Final State

Free pool

What went wrong?

head tail

© Herlihy-Shavit 92

The Dreaded ABA Problem

Head pointer has value A
Thread reads value A

head tail

© Herlihy-Shavit 93

Dreaded ABA continued

zzz Head pointer has value B
Node A freed

head tail

© Herlihy-Shavit 93

Dreaded ABA continued

zzz Head pointer has value B
Node A freed

head tail

© Herlihy-Shavit 94

Dreaded ABA continued

Yawn! Head pointer has value A again
Node A recycled & reinitialized

head tail

© Herlihy-Shavit 95

Dreaded ABA continued

CAS succeeds because pointer matches
even though pointer’s meaning has changed

head tail

© Herlihy-Shavit 95

Dreaded ABA continued

CAS succeeds because pointer matches
even though pointer’s meaning has changed

head tail

© Herlihy-Shavit 96

The Dreaded ABA Problem

• Is a result of CAS() semantics (Sun, Intel,
AMD)

• Does not arise with Load-Locked/Store-
Conditional (IBM)
• store conditional fails if memory

location was updated since load-locked
operation

© Herlihy-Shavit 97

Dreaded ABA – A Solution

• Tag each pointer with a counter
• Unique over lifetime of node
• Pointer size vs word size issues
• Overflow?

• Don’t worry be happy?
• Bounded tags?

• AtomicStampedReference class

© Herlihy-Shavit 98

A Concurrent Stack

• Add() and Remove() of Stack are called
push() and pop()

• A Stack is a pool with LIFO order on
pushes and pops

© Herlihy-Shavit 99

Unbounded Lock-free Stack

Top

© Herlihy-Shavit 100

Unbounded Lock-free Stack

Top

© Herlihy-Shavit 101

Push()

TopCAS

© Herlihy-Shavit 102

Push()

Top

© Herlihy-Shavit 103

Push()

TopCAS

© Herlihy-Shavit 104

Push()

Top

© Herlihy-Shavit 105

Push()

Top

© Herlihy-Shavit 106

Push()

Top

© Herlihy-Shavit 107

Push()

TopCAS

© Herlihy-Shavit 108

Push()

Top

© Herlihy-Shavit 109

Pop()

Top

© Herlihy-Shavit 110

Pop()

TopCAS

© Herlihy-Shavit 111

Pop()

TopCAS

© Herlihy-Shavit 112

Pop()

TopCAS

© Herlihy-Shavit 113

Pop()

Top

© Herlihy-Shavit 114

public class LockFreeStack {
 private AtomicReference top = new
 AtomicReference(null);

 public boolean tryPush(Node node){
 Node oldTop = top.get();
 node.next = oldTop;
 return(top.compareAndSet(oldTop, node))
 }
 public void push(T value) {

 Node node = new Node(value);
 while (true) {
 if (tryPush(node)) {
 return;
 } else
 backoff.backoff()
 }
 }

Lock-free Stack

public class LockFreeStack {
 private AtomicReference top = new
 AtomicReference(null);

 public boolean tryPush(Node node){
 Node oldTop = top.get();
 node.next = oldTop;
 return(top.compareAndSet(oldTop, node))
 }
 public void push(T value) {

 Node node = new Node(value);
 while (true) {
 if (tryPush(node)) {
 return;
 } else
 backoff.backoff()
 }
 }

© Herlihy-Shavit 115

Lock-free Stack

Push uses tryPush() method

public class LockFreeStack {
 private AtomicReference top = new
 AtomicReference(null);

 public boolean tryPush(Node node){
 Node oldTop = top.get();
 node.next = oldTop;
 return(top.compareAndSet(oldTop, node))
 }
 public void push(T value) {

 Node node = new Node(value);
 while (true) {
 if (tryPush(node)) {
 return;
 } else
 backoff.backoff()
 }
 }

© Herlihy-Shavit 116

Lock-free Stack

Create a new node

public class LockFreeStack {
 private AtomicReference top = new
 AtomicReference(null);

 public boolean tryPush(Node node){
 Node oldTop = top.get();
 node.next = oldTop;
 return(top.compareAndSet(oldTop, node))
 }
 public void push(T value) {

 Node node = new Node(value);
 while (true) {
 if (tryPush(node)) {
 return;
 } else
 backoff.backoff()
 }
 }

© Herlihy-Shavit 117

Lock-free Stack

Then try to push:
if tryPush()
fails back-off
before retrying

public class LockFreeStack {
 private AtomicReference top = new
 AtomicReference(null);

 public boolean tryPush(Node node){
 Node oldTop = top.get();
 node.next = oldTop;
 return(top.compareAndSet(oldTop, node))
 }
 public void push(T value) {

 Node node = new Node(value);
 while (true) {
 if (tryPush(node)) {
 return;
 } else
 backoff.backoff()
 }
 }

© Herlihy-Shavit 118

Lock-free Stack

tryPush() attempts to push a node at top

public class LockFreeStack {
 private AtomicReference top = new
 AtomicReference(null);

 public boolean tryPush(Node node){
 Node oldTop = top.get();
 node.next = oldTop;
 return(top.compareAndSet(oldTop, node))
 }
 public void push(T value) {

 Node node = new Node(value);
 while (true) {
 if (tryPush(node)) {
 return;
 } else
 backoff.backoff()
 }
 }

© Herlihy-Shavit 119

Lock-free Stack

Read top value

public class LockFreeStack {
 private AtomicReference top = new
 AtomicReference(null);

 public boolean tryPush(Node node){
 Node oldTop = top.get();
 node.next = oldTop;
 return(top.compareAndSet(oldTop, node))
 }
 public void push(T value) {

 Node node = new Node(value);
 while (true) {
 if (tryPush(node)) {
 return;
 } else
 backoff.backoff()
 }
 }

© Herlihy-Shavit 120

Lock-free Stack

current top will be new node’s successor

public class LockFreeStack {
 private AtomicReference top = new
 AtomicReference(null);

 public boolean tryPush(Node node){
 Node oldTop = top.get();
 node.next = oldTop;
 return(top.compareAndSet(oldTop, node))
 }
 public void push(T value) {

 Node node = new Node(value);
 while (true) {
 if (tryPush(node)) {
 return;
 } else
 backoff.backoff()
 }
 }

© Herlihy-Shavit 121

Lock-free Stack

Try to swing top to point at my new node

© Herlihy-Shavit 122

Lock-free Stack

• Good: No locking
• Bad: if no GC then ABA as in queue (add

time stamps)
• Bad: Contention on top (add backoff)
• Bad: No parallelism

• Is a stack inherently sequential?

© Herlihy-Shavit 123

Elimination-Backoff Stack

• How to “turn contention into parallelism”
• Replace regular exponential-backoff
• with an alternative elimination-backoff

mechanism

© Herlihy-Shavit 124

Observation

Push()

Pop()

linearizable stack

© Herlihy-Shavit 124

Observation

Push()

Pop()

linearizable stack

© Herlihy-Shavit 124

Observation

Push()

Pop()

linearizable stack

© Herlihy-Shavit 124

Observation

Push()

Pop()

linearizable stack

After any equal number
of pushes and pops,
stack stays the same

© Herlihy-Shavit 125

Idea: Elimination Array

Push()

Pop()

stack

Pick at
random

Pick at
random

Elimination
Array

© Herlihy-Shavit 126

Push Collides With Pop

Push()

Pop()

stack

© Herlihy-Shavit 126

Push Collides With Pop

Push()

Pop()

stack

© Herlihy-Shavit 126

Push Collides With Pop

Push()

Pop()

stack

© Herlihy-Shavit 126

Push Collides With Pop

Push()

Pop()

stack

continue

continue

© Herlihy-Shavit 126

Push Collides With Pop

Push()

Pop()

stack

continue

continue

No need to
access stack

© Herlihy-Shavit 127

No Collision

Push()

Pop()

stack

© Herlihy-Shavit 127

No Collision

Push()

Pop()

stack

© Herlihy-Shavit 127

No Collision

Push()

Pop()

stack

© Herlihy-Shavit 127

No Collision

Push()

Pop()

stack

© Herlihy-Shavit 127

No Collision

Push()

Pop()

stack

© Herlihy-Shavit 127

No Collision

Push()

Pop()

stack

© Herlihy-Shavit 127

No Collision

Push()

Pop()

stack

If no collision,
access stack

© Herlihy-Shavit 127

No Collision

Push()

Pop()

stack

If no collision,
access stack

If pushes collide
or pops collide
access stack

© Herlihy-Shavit 128

Elimination-Backoff Stack

• Lock-free stack + elimination array
• Access Lock-free stack,

– If uncontended, apply operation
– if contended, back off to elimination

array and attempt elimination

© Herlihy-Shavit 129

Elimination-Backoff Stack

Push()

Pop()
Top

© Herlihy-Shavit 129

Elimination-Backoff Stack

Push()

Pop()
TopCAS

© Herlihy-Shavit 129

Elimination-Backoff Stack

Push()

Pop()
TopCAS

If failed CAS back-off

© Herlihy-Shavit 130

Dynamic Range and Delay

Push()

Pick range and max time
to wait for collision based
on level of
contention encountered

© Herlihy-Shavit 130

Dynamic Range and Delay

Push()

Pick range and max time
to wait for collision based
on level of
contention encountered

© Herlihy-Shavit 130

Dynamic Range and Delay

Push()

Pick range and max time
to wait for collision based
on level of
contention encountered

© Herlihy-Shavit 131

Linearizability

• Un-eliminated Lock-free stack calls:
• linearized as before

• Eliminated calls:
• linearize push() immediately before

the pop() at the collision point
• Combination is a linearizable stack

Linearizability

137

push(x) push(y) pop:y pop:x

Linearizability

138

push(x) push(y) pop:y pop:x

eliminatedstack stack

push
pop

Linearizability

139

push(x) push(y) pop:ypop:x

eliminated
stack

push
pop

© Herlihy-Shavit 132

Backoff Has Dual Effect

• Elimination introduces parallelism
• Backoff onto array cuts contention on

lock-free stack
• cuts down total number of threads

ever accessing lock-free stack

© Herlihy-Shavit 133

public class EliminationArray {
 private static final int duration = ...;
 private static final int timeUnit = ...;
 Exchanger<T>[] exchanger;
 Random random;
 public EliminationArray(int capacity) {
 exchanger = (Exchanger<T>[]) new

 Exchanger[capacity];
 for (int i = 0; i < capacity; i++) {
 exchanger[i] = new Exchanger<T>();
 }
 random = new Random();
 }
 …
}

Elimination Array

© Herlihy-Shavit 134

public class EliminationArray {
 private static final int duration = ...;
 private static final int timeUnit = ...;
 Exchanger<T>[] exchanger;
 Random random;
 public EliminationArray(int capacity) {
 exchanger = (Exchanger<T>[]) new
 Exchanger[capacity];
 for (int i = 0; i < capacity; i++) {
 exchanger[i] = new Exchanger<T>();
 }
 random = new Random();
 }
 …
}

Elimination Array

An array of exchangers

© Herlihy-Shavit 135

public class Exchanger<T> {
 AtomicStampedReference<T> slot = new
AtomicStampedReference<T>(null, 0);

A Lock-Free Exchanger

© Herlihy-Shavit 136

public class Exchanger<T> {
 AtomicStampedReference<T> slot = new
AtomicStampedReference<T>(null, 0);

A Lock-Free Exchanger

Slot holds atomically modifiable reference
and time stamp

© Herlihy-Shavit 137

Atomic Stamped Reference

• AtomicStampedReference class
• Java.util.concurrent.atomic

package

address S

Stamp

Reference

© Herlihy-Shavit 138

Extracting Reference & Stamp

public T get(int[] stampHolder);

© Herlihy-Shavit 139

Extracting Reference & Stamp

Public T get(int[] stampHolder);

Returns
reference to

object of
type T

Returns stamp at
array index 0!

© Herlihy-Shavit 140

public T Exchange(T myItem, long nanos) throws
TimeoutException {
 long timeBound = System.nanoTime() + nanos;
 int[] stampHolder = {0};
 while (true) {
 if (System.nanoTime() > timeBound)
 throw new TimeoutException();
 T herItem = slot.get(stampHolder);
 int stamp = stampHolder[0];
 switch(stamp % 3) {
 case 0: // slot is free
 case 1: // someone waiting for me
 case 2: // others exchanging
 }
 }}

The Exchange

© Herlihy-Shavit 141

public T Exchange(T myItem, long nanos) throws
TimeoutException {
 long timeBound = System.nanoTime() + nanos;
 int[] stampHolder = {0};
 while (true) {
 if (System.nanoTime() > timeBound)
 throw new TimeoutException();
 T herItem = slot.get(stampHolder);
 int stamp = stampHolder[0];
 switch(stamp % 3) {
 case 0: // slot is free
 case 1: // someone waiting for me
 case 2: // others exchanging
 }
 }}

The Exchange

Input item and max time to
wait for exchange before
timing out

© Herlihy-Shavit 142

public T Exchange(T myItem, long nanos) throws
TimeoutException {
 long timeBound = System.nanoTime() + nanos;
 int[] stampHolder = {0};
 while (true) {
 if (System.nanoTime() > timeBound)
 throw new TimeoutException();
 T herItem = slot.get(stampHolder);
 int stamp = stampHolder[0];
 switch(stamp % 3) {
 case 0: // slot is free
 case 1: // someone waiting for me
 case 2: // others exchanging
 }
 }}

The Exchange

Array to hold extracted
timestamp

© Herlihy-Shavit 143

public T Exchange(T myItem, long nanos) throws
TimeoutException {
 long timeBound = System.nanoTime() + nanos;
 int[] stampHolder = {0};
 while (true) {
 if (System.nanoTime() > timeBound)
 throw new TimeoutException();
 T herItem = slot.get(stampHolder);
 int stamp = stampHolder[0];
 switch(stamp % 3) {
 case 0: // slot is free
 case 1: // someone waiting for me
 case 2: // others exchanging
 }
 }}

The Exchange

Loop as long as time to
attempt exchange does not
run out

© Herlihy-Shavit 144

public T Exchange(T myItem, long nanos) throws
TimeoutException {
 long timeBound = System.nanoTime() + nanos;
 int[] stampHolder = {0};
 while (true) {
 if (System.nanoTime() > timeBound)
 throw new TimeoutException();
 T herItem = slot.get(stampHolder);
 int stamp = stampHolder[0];
 switch(stamp % 3) {
 case 0: // slot is free
 case 1: // someone waiting for me
 case 2: // others exchanging
 }
 }}

The Exchange

Get others item and time-
stamp

© Herlihy-Shavit 145

public T Exchange(T myItem, long nanos) throws
TimeoutException {
 long timeBound = System.nanoTime() + nanos;
 int[] stampHolder = {0};
 while (true) {
 if (System.nanoTime() > timeBound)
 throw new TimeoutException();
 T herItem = slot.get(stampHolder);
 int stamp = stampHolder[0];
 switch(stamp % 3) {
 case 0: // slot is free
 case 1: // someone waiting for me
 case 2: // others exchanging
 }
 }}

The Exchange

Exchanger slot has three
states determined by the
timestamp mod 3

© Herlihy-Shavit 146

Lock-free Exchanger

Slot

item stamp/state

0

© Herlihy-Shavit 146

Lock-free Exchanger

SlotState = 0

item stamp/state

0

© Herlihy-Shavit 146

Lock-free Exchanger

SlotState = 0

item stamp/state

0CAS

© Herlihy-Shavit 147

Lock-free Exchanger

Slot

item stamp/state

1

© Herlihy-Shavit 147

Lock-free Exchanger

Slot

State changed
to 1 wait for
someone to

appear…

item stamp/state

1

© Herlihy-Shavit 148

Lock-free Exchanger

Slot

Still waiting for
someone to

appear…

item stamp/state

1

© Herlihy-Shavit 148

Lock-free Exchanger

Slot

Still waiting for
someone to

appear…

item stamp/state

1

Try to exchange
item and set

state to 2

© Herlihy-Shavit 148

Lock-free Exchanger

Slot

Still waiting for
someone to

appear…

item stamp/state

1CAS

Try to exchange
item and set

state to 2

© Herlihy-Shavit 149

Lock-free Exchanger

Slot

item stamp/state

2

© Herlihy-Shavit 149

Lock-free Exchanger

Slot

item stamp/state

2

© Herlihy-Shavit 149

Lock-free Exchanger

Slot

2 means someone
showed up, take
item and reset to

0

item stamp/state

2

© Herlihy-Shavit 150

Lock-free Exchanger

Slot

item stamp/state

2

© Herlihy-Shavit 150

Lock-free Exchanger

Slot

Read item and
increment

timestamp to
0 mod 3

item stamp/state

2

© Herlihy-Shavit 150

Lock-free Exchanger

Slot

Read item and
increment

timestamp to
0 mod 3

item stamp/state

2

© Herlihy-Shavit 150

Lock-free Exchanger

Slot

Read item and
increment

timestamp to
0 mod 3

item stamp/state

2

© Herlihy-Shavit 150

Lock-free Exchanger

Slot

Read item and
increment

timestamp to
0 mod 3

item stamp/state

20

© Herlihy-Shavit 151

case 0: // slot is free
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
 while (System.nanoTime() < timeBound){
 herItem = slot.get(stampHolder);
 if (stampHolder[0] == stamp + 2) {
 slot.set(null, stamp + 3);
 return herItem;
 }}
 if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new
TimeoutException();
 } else {
 herItem = slot.get(stampHolder);
 slot.set(null, stamp + 3);
 return herItem;
 }
} break;

Exchanger State 0

© Herlihy-Shavit 152

case 0: // slot is free
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
 while (System.nanoTime() < timeBound){
 herItem = slot.get(stampHolder);
 if (stampHolder[0] == stamp + 2) {
 slot.set(null, stamp + 3);
 return herItem;
 }}
 if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new
TimeoutException();
 } else {
 herItem = slot.get(stampHolder);
 slot.set(null, stamp + 3);
 return herItem;
 }
} break;

Exchanger State 0

Slot is free, try and insert
myItem and change state to
1

© Herlihy-Shavit 153

case 0: // slot is free
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
 while (System.nanoTime() < timeBound){
 herItem = slot.get(stampHolder);
 if (stampHolder[0] == stamp + 2) {
 slot.set(null, stamp + 3);
 return herItem;
 }}
 if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new
TimeoutException();
 } else {
 herItem = slot.get(stampHolder);
 slot.set(null, stamp + 3);
 return herItem;
 }
} break;

Exchanger State 0

Loop while still time left to
try and exchange

© Herlihy-Shavit 154

case 0: // slot is free
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
 while (System.nanoTime() < timeBound){
 herItem = slot.get(stampHolder);
 if (stampHolder[0] == stamp + 2) {
 slot.set(null, stamp + 3);
 return herItem;
 }}
 if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new
TimeoutException();
 } else {
 herItem = slot.get(stampHolder);
 slot.set(null, stamp + 3);
 return herItem;
 }
} break;

Exchanger State 0

Get item and stamp in slot
and check if state changed
to 2

© Herlihy-Shavit 155

case 0: // slot is free
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
 while (System.nanoTime() < timeBound){
 herItem = slot.get(stampHolder);
 if (stampHolder[0] == stamp + 2) {
 slot.set(null, stamp + 3);
 return herItem;
 }}
 if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new
TimeoutException();
 } else {
 herItem = slot.get(stampHolder);
 slot.set(null, stamp + 3);
 return herItem;
 }
} break;

Exchanger State 0

If successful reset slot state
to 0

© Herlihy-Shavit 156

case 0: // slot is free
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
 while (System.nanoTime() < timeBound){
 herItem = slot.get(stampHolder);
 if (stampHolder[0] == stamp + 2) {
 slot.set(null, stamp + 3);
 return herItem;
 }}
 if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new
TimeoutException();
 } else {
 herItem = slot.get(stampHolder);
 slot.set(null, stamp + 3);
 return herItem;
 }
} break;

Exchanger State 0

and return item found in
slot

© Herlihy-Shavit 157

case 0: // slot is free
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
 while (System.nanoTime() < timeBound){
 herItem = slot.get(stampHolder);
 if (stampHolder[0] == stamp + 2) {
 slot.set(null, stamp + 3);
 return herItem;
 }}
 if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new
TimeoutException();
 } else {
 herItem = slot.get(stampHolder);
 slot.set(null, stamp + 3);
 return herItem;
 }
} break;

Exchanger State 0

Otherwise we ran out of
time, try and reset state to
0, if successful time out

© Herlihy-Shavit 158

case 0: // slot is free
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
 while (System.nanoTime() < timeBound){
 herItem = slot.get(stampHolder);
 if (stampHolder[0] == stamp + 2) {
 slot.set(null, stamp + 3);
 return herItem;
 }}
 if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new
TimeoutException();
 } else {
 herItem = slot.get(stampHolder);
 slot.set(null, stamp + 3);
 return herItem;
 }
} break;

Exchanger State 0

If reset failed can only be
that someone showed up
after all, take her item

© Herlihy-Shavit 159

case 0: // slot is free
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
 while (System.nanoTime() < timeBound){
 herItem = slot.get(stampHolder);
 if (stampHolder[0] == stamp + 2) {
 slot.set(null, stamp + 3);
 return herItem;
 }}
 if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new
TimeoutException();
 } else {
 herItem = slot.get(stampHolder);
 slot.set(null, stamp + 3);
 return herItem;
 }
} break;

Exchanger State 0

Set slot to 0 with new time
stamp and return the item
found

© Herlihy-Shavit 160

case 0: // slot is free
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1)) {
 while (System.nanoTime() < timeBound){
 herItem = slot.get(stampHolder);
 if (stampHolder[0] == stamp + 2) {
 slot.set(null, stamp + 3);
 return herItem;
 }}
 if (slot.compareAndSet(myItem, null, stamp + 1, stamp)) {throw new
TimeoutException();
 } else {
 herItem = slot.get(stampHolder);
 slot.set(null, stamp + 3);
 return herItem;
 }
} break;

Exchanger State 0

If initial CAS failed then
someone else changed slot
from 0 to 1 so retry from
start

© Herlihy-Shavit 161

case 1: // someone waiting for me
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1))
 return herItem;
 break;
case 2: // others in middle of exchanging
 break;
default: // impossible
 break;
 }
 }
 }
}

Exchanger States 1 and 2

© Herlihy-Shavit 162

case 1: // someone waiting for me
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1))
 return herItem;
 break;
case 2: // others in middle of exchanging
 break;
default: // impossible
 break;
 }
 }
 }
}

Exchanger States 1 and 2

state 1 means someone is
waiting for an exchange, so
attempt to CAS my Item in
and change state to 2

© Herlihy-Shavit 163

case 1: // someone waiting for me
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1))
 return herItem;
 break;
case 2: // others in middle of exchanging
 break;
default: // impossible
 break;
 }
 }
 }
}

Exchanger States 1 and 2

If successful return her
item, state is now 2,
otherwise someone else
took her item so try again
from start

© Herlihy-Shavit 164

case 1: // someone waiting for me
 if (slot.compareAndSet(herItem, myItem, stamp, stamp + 1))
 return herItem;
 break;
case 2: // others in middle of exchanging
 break;
default: // impossible
 break;
 }
 }
 }
}

Exchanger States 1 and 2

If state is 2 then some other
threads are using slot to
exchange so start again

© Herlihy-Shavit 146

Lock-free Exchanger

Slot

item stamp/state

0

© Herlihy-Shavit 146

Lock-free Exchanger

SlotState = 0

item stamp/state

0

© Herlihy-Shavit 146

Lock-free Exchanger

SlotState = 0

item stamp/state

0CAS

© Herlihy-Shavit 147

Lock-free Exchanger

Slot

item stamp/state

1

© Herlihy-Shavit 147

Lock-free Exchanger

Slot

State changed
to 1 wait for
someone to

appear…

item stamp/state

1

© Herlihy-Shavit 148

Lock-free Exchanger

Slot

Still waiting for
someone to

appear…

item stamp/state

1

© Herlihy-Shavit 148

Lock-free Exchanger

Slot

Still waiting for
someone to

appear…

item stamp/state

1

Try to exchange
item and set

state to 2

© Herlihy-Shavit 148

Lock-free Exchanger

Slot

Still waiting for
someone to

appear…

item stamp/state

1CAS

Try to exchange
item and set

state to 2

© Herlihy-Shavit 149

Lock-free Exchanger

Slot

item stamp/state

2

© Herlihy-Shavit 149

Lock-free Exchanger

Slot

item stamp/state

2

© Herlihy-Shavit 149

Lock-free Exchanger

Slot

2 means someone
showed up, take
item and reset to

0

item stamp/state

2

© Herlihy-Shavit 150

Lock-free Exchanger

Slot

item stamp/state

2

© Herlihy-Shavit 150

Lock-free Exchanger

Slot

Read item and
increment

timestamp to
0 mod 3

item stamp/state

2

© Herlihy-Shavit 150

Lock-free Exchanger

Slot

Read item and
increment

timestamp to
0 mod 3

item stamp/state

2

© Herlihy-Shavit 150

Lock-free Exchanger

Slot

Read item and
increment

timestamp to
0 mod 3

item stamp/state

2

© Herlihy-Shavit 150

Lock-free Exchanger

Slot

Read item and
increment

timestamp to
0 mod 3

item stamp/state

20

© Herlihy-Shavit 165

Our Exchanger Slot

• Notice that we showed a general lock-
free exchanger

• Its lock-free because the only way an
exchange can fail is if others repeatedly
succeeded or no-one showed up

• The slot we need does not require
symmetric exchange

© Herlihy-Shavit 166

public class EliminationArray {
…
public T visit(T value, int Range) throws TimeoutException {
 int slot = random.nextInt(Range);
 int nanodur = convertToNanos(duration, timeUnit))
 return (exchanger[slot].exchange(value, nanodur)
}}

Elimination Array

© Herlihy-Shavit 167

public class EliminationArray {
…
public T visit(T value, int Range) throws TimeoutException {
 int slot = random.nextInt(Range)
 return (exchanger[slot].exchange(value, nanodur))
}}

Elimination Array

visit the elimination array with a value
and a range (duration to wait is not
dynamic)

© Herlihy-Shavit 168

public class EliminationArray {
…
public T visit(T value, int Range) throws TimeoutException {
 int slot = random.nextInt(Range)
 return (exchanger[slot].exchange(value, nanodur))
}}

Elimination Array
Pick a random array entry

© Herlihy-Shavit 169

public class EliminationArray {
…
public T visit(T value, int Range) throws TimeoutException {
 int slot = random.nextInt(Range)
 return (exchanger[slot].exchange(value, nanodur))
}}

Elimination Array

Exchange value or time out

© Herlihy-Shavit 170

public void push(T value) {
...
 while (true) {
 if (tryPush(node)) {
 return;
 } else try {
 T otherValue =
eliminationArray.visit(value,policy.Range);
 if (otherValue == null) {
 return;
 }
}

Elimination Stack Push

© Herlihy-Shavit 171

public void push(T value) {
...
 while (true) {
 if (tryPush(node)) {
 return;
 } else try {
 T otherValue =
eliminationArray.visit(value,policy.Range);
 if (otherValue == null) {
 return;
 }
}

Elimination Stack Push

First try to push

© Herlihy-Shavit 172

public void push(T value) {
...
 while (true) {
 if (tryPush(node)) {
 return;
 } else try {
 T otherValue =
eliminationArray.visit(value,policy.Range);
 if (otherValue == null) {
 return;
 }
}

Elimination Stack Push

If failed back-off to try and eliminate

© Herlihy-Shavit 173

public void push(T value) {
...
 while (true) {
 if (tryPush(node)) {
 return;
 } else try {
 T otherValue =
eliminationArray.visit(value,policy.Range);
 if (otherValue == null) {
 return;
 }
}

Elimination Stack Push

Value being pushed and range to try

© Herlihy-Shavit 174

public void push(T value) {
...
 while (true) {
 if (tryPush(node)) {
 return;
 } else try {
 T otherValue =
eliminationArray.visit(value,policy.Range);
 if (otherValue == null) {
 return;
 }
}

Elimination Stack Push

Only a pop has null value
so elimination was successful

© Herlihy-Shavit 175

public void push(T value) {
...
 while (true) {
 if (tryPush(node)) {
 return;
 } else try {
 T otherValue =
eliminationArray.visit(value,policy.Range);
 if (otherValue == null) {
 return;
 }
}

Elimination Stack Push

Else retry push on lock-free stack

© Herlihy-Shavit 176

public T pop() {
 ...
 while (true) {
 if (tryPop()) {
 return returnNode.value;
 } else
 try {
 T otherValue = eliminationArray.visit(null,policy.Range);
 if (otherValue != null) {
 return otherValue;
 }
 }
}}

Elimination Stack Pop

© Herlihy-Shavit 177

public T pop() {
 ...
 while (true) {
 if (tryPop()) {
 return returnNode.value;
 } else
 try {
 T otherValue = eliminationArray.visit(null,policy.Range;
 if (otherValue != null) {
 return otherValue;
 }
 }
}}

Elimination Stack Pop

If non-null other
thread must have pushed,
so elimination succeeds

Linearizability

191

push(x)

push(y)

pop:y

pop:x

Linearizability

192

push(x)

push(y)

pop:y

pop:x

LP

LP

Linearizability

192

push(x)

push(y)

pop:y

pop:x

LP

LP

LP

LP
<

Linearizability

193

push(x)

push(y)

pop:y

pop:x

Linearizability

193

push(x)

push(y)

pop:y

pop:x<

Elimination

194

push(x)

push(y)

pop:y

pop:x

Elimination

194

push(x)

push(y)

pop:y

pop:x

eliminated

Elimination

194

push(x)

push(y)

pop:y

pop:x

eliminated

<

<

Elimination

195

push(x)

push(y)

pop:y

pop:x

push(z)

pop:z

Elimination

195

push(x)

push(y)

pop:y

pop:x

eliminated

push(z)

pop:z

Elimination

195

push(x)

push(y)

pop:y

pop:x

eliminated

push(z)

pop:z

eliminated

Elimination

195

push(x)

push(y)

pop:y

pop:x

eliminated

<

<

push(z)

pop:z

eliminated

Measurements

196

repeat
op:=random(push,pop)
perform op
w:=random(0..workload)
wait w millisecs

until 500000 operations performed

Figure 6: Produce-Consume benchmark

thread t keeps a value spin which holds the amount of time
that t should delay while waiting to be collided. The spin
value may change within a predetermined range. When t
successfully collides, it increments a local counter. When
the counter exceeds some limit, t doubles spin. If t fails to
collide, it decrements the local counter. When the counter
decreases bellow some limit, spin is halved. This localized
version of exponential backo� serves a dual role: it increases
the chance of successful eliminations, and it plays the role
of a backo� mechanism on the central stack structure.

There are obviously other conceivable ways of adaptively
updating these parameters, and this is a subject for further
research.

4. PERFORMANCE
We evaluated the performance of our elimination-backo�

stack algorithm relative to other known methods by run-
ning a collection of synthetic benchmarks on a 14 node Sun
EnterpriseTM E6500, an SMP machine formed from 7 boards
of two 400MHz UltraSparcTM processors, connected by a
crossbar UPA switch, and running Solaris 9. Our C code
was compiled by a Sun cc compiler 5.3, with flags -xO5
-xarch=v8plusa.

4.1 The Benchmarked Algorithms
We compared our stack implementation to the lock-free

but non-linearizable elimination tree of Shavit and Touitou
[17] and to two linearizable methods: a serial stack protected
by MCS lock [13], and a non-blocking implementation due
to Treiber [22].

• MCS A serial stack protected by an MCS-queue-lock
[13]. Each processor locks the top of the stack, changes
it according to the type of the operation, and then
unlocks it. The lock code was taken directly from the
article.

• Treiber Our implementation of Treiber’s non-blocking
stack followed the code given in [22]. We added to it
exponential backo� scheme, as introduced in [2].

• ETree An elimination tree [17] based stack. Its pa-
rameters were chosen so as to optimize its performance,
based on empirical testing.

4.2 The Produce-Consume Benchmark
In the produce-consume benchmark each thread alter-

nately performs a push or pop operation and then waits for
a period or time, whose length is chosen uniformly at ran-
dom from the range: [0 . . . workload]. The waiting period
simulates the local work that is typically done by threads in
real applications between stack operations (see Figure 6). In
all our experiments the stack was initialized as su⇥ciently
filled to prevent it from becoming empty during the run.

Throughput

0
1000
2000
3000
4000
5000
6000
7000
8000

1 2 4 8 14 32
Threads

N
um

be
r o

f o
pe

ra
tio

n
pe

r s
ec

on
d

New algorithm

Treiber with backoff

MCS
Treiber

ETree

Latency

300

500

700

900

1100

1300

1500

1700

1900

1 2 4 8 14 32
Threads

Av
er

ag
e

la
te

nc
y

pe
r

op
er

at
io

n

New algorithm
Treiber with backoff
MCS
Treiber
ETree

Figure 7: Throughput and latency of di�erent stack
implementations with varying number of threads.
Each thread performs 50% pushs, 50% pops.

4.3 Measuring theperformance of benchmarked
algorithms

We ran the produce-consume benchmark specified above
varying the number of threads and measuring latency, the
average amount of time spent per operation, and throughput,
the number of operations per second. We compute through-
put and latency by measuring the total time required to
perform the specific amount of operations by each thread.
We refer to the longest time as the time needed to complete
the specified amount of work.

To counteract transient startup e�ects, we synchronized
the start of the threads (i.e., no thread can start before all
other threads finished their initialization phase). Each data
point is the average of three runs, with the results varying
by at most 1.4% throughout all our benchmarks.

4.4 Empirical Results
Figure 7 shows the results of a benchmark in which half a

million operations were performed by every working thread,
with each thread performing 50% pushs and 50% pops on
average. Figure 9 provides a detailed view of the three best
performers. From Figure 7 it can be seen that our results for
known structures generally conform with those of [15, 16],
and that Treiber’s algorithm with added exponential backo�
is the best among known techniques. It can also be seen that
the new algorithm provides superior scalable performance at
all tested concurrency levels. The throughput gap between
our algorithm and Treiber’s algorithm with backo� grows
as concurrency increases, and at 32 threads the new algo-
rithm is almost three times faster. Such a significant gap in
performance can be explained by reviewing the di�erence in
latency for the two algorithms.

Table 1 shows latency measured on a single dedicated pro-

210

(14 processor sun)

elimination backoff

stack

(50% push, 50% pop)

lock

lockfree with backoff

lockfree (no backoff)

© Herlihy-Shavit 178

Summary
• We saw both lock-based and lock-free

implementations of
• queues and stacks

• Don’t be quick to declare a data structure
inherently sequential
• Linearizable stack is not inherently

sequential
• ABA is a real problem, pay attention

