

Prof. Christof Fetzer
TU Dresden

FOUNDATIONS OF CONCURRENT AND DISTRIBUTED SYSTEMS
- LINKED LISTS: LOCKING, LOCK-FREE, AND BEYOND -

Concurrency: Foundations and Algorithms —

Today: Concurrent Objects
➤ Adding threads…

➤ Should not lower throughput

➤ Contention effects

➤ Mostly fixed by queue locks

➤ Overhead to acquire the lock:

➤ we look at futex a later lecture and briefly discuss queue locks.

➤ Should increase throughput

➤ Not possible if inherently sequential

➤ Surprising things are parallelizable

2

Concurrency: Foundations and Algorithms —

Today: Concurrent Objects
➤ Adding threads…

➤ Should not lower throughput

➤ Contention effects

➤ Mostly fixed by queue locks

➤ Overhead to acquire the lock:

➤ we look at futex a later lecture and briefly discuss queue locks.

➤ Should increase throughput

➤ Not possible if inherently sequential

➤ Surprising things are parallelizable

2

Concurrency: Foundations and Algorithms —

Today: Concurrent Objects
➤ Adding threads…

➤ Should not lower throughput

➤ Contention effects

➤ Mostly fixed by queue locks

➤ Overhead to acquire the lock:

➤ we look at futex a later lecture and briefly discuss queue locks.

➤ Should increase throughput

➤ Not possible if inherently sequential

➤ Surprising things are parallelizable

2

Concurrency: Foundations and Algorithms —

Today: Concurrent Objects
➤ Adding threads…

➤ Should not lower throughput

➤ Contention effects

➤ Mostly fixed by queue locks

➤ Overhead to acquire the lock:

➤ we look at futex a later lecture and briefly discuss queue locks.

➤ Should increase throughput

➤ Not possible if inherently sequential

➤ Surprising things are parallelizable

2

Concurrency: Foundations and Algorithms —

Today: Concurrent Objects
➤ Adding threads…

➤ Should not lower throughput

➤ Contention effects

➤ Mostly fixed by queue locks

➤ Overhead to acquire the lock:

➤ we look at futex a later lecture and briefly discuss queue locks.

➤ Should increase throughput

➤ Not possible if inherently sequential

➤ Surprising things are parallelizable

2

Concurrency: Foundations and Algorithms —

Today: Concurrent Objects
➤ Adding threads…

➤ Should not lower throughput

➤ Contention effects

➤ Mostly fixed by queue locks

➤ Overhead to acquire the lock:

➤ we look at futex a later lecture and briefly discuss queue locks.

➤ Should increase throughput

➤ Not possible if inherently sequential

➤ Surprising things are parallelizable

2

Concurrency: Foundations and Algorithms —

Today: Concurrent Objects
➤ Adding threads…

➤ Should not lower throughput

➤ Contention effects

➤ Mostly fixed by queue locks

➤ Overhead to acquire the lock:

➤ we look at futex a later lecture and briefly discuss queue locks.

➤ Should increase throughput

➤ Not possible if inherently sequential

➤ Surprising things are parallelizable

2

Concurrency: Foundations and Algorithms —

➤ Each method locks the object

➤ Avoid contention using queue locks

➤ Easy to reason about

➤ In simple cases

➤ Standard Java model

➤ Synchronized blocks and methods

➤ So, are we done?

Coarse-Grained Synchronization

3

Concurrency: Foundations and Algorithms —

Coarse-Grained Synchronization

➤ Sequential bottleneck

➤ All threads “stand in line”

➤ Adding more threads

➤ Does not improve throughput

➤ Struggle to keep it from getting worse

➤ So why even use a multiprocessor?

➤ Well, some applications inherently parallel…
4

Concurrency: Foundations and Algorithms —

This Lecture

➤ Introduce four “patterns”

➤ Bag of tricks

➤ Methods that work more than once

➤ For highly-concurrent objects

➤ Goal

➤ Concurrent access

➤ More threads, more throughput
5

Concurrency: Foundations and Algorithms —

1. Fine-Grained Synchronization

➤ Instead of using a single lock…

➤ Split object into independently-synchronized
components

➤ Methods conflict when they access

➤ The same component…

➤ At the same time

6

Concurrency: Foundations and Algorithms —

2. Optimistic Synchronization

➤ Object = linked set of components

➤ Search without locking…

➤ If you find it, lock and check…

➤ OK, we are done

➤ Oops, try again

➤ Evaluation

➤ Cheaper than locking

➤ Mistakes are expensive
7

Concurrency: Foundations and Algorithms —

3. Lazy Synchronization

➤ Postpone hard work

➤ Removing components is tricky

➤ Logical removal

➤ Mark component to be deleted

➤ Physical removal

➤ Do what needs to be done
8

Concurrency: Foundations and Algorithms —

4. Lock-Free Synchronization

➤ Do not use locks at all

➤ Use compareAndSet() and relatives…

➤ Advantages

➤ Robust against asynchrony

➤ Disadvantages

➤ Complex

➤ Sometimes high overhead
9

© Herlihy and Shavit

Wait-Free Implementations

Definition: An object implementation is
wait-free if every thread completes a method in
a finite number of steps

No mutual exclusion
➤ Thread could halt in critical section

10

© Herlihy and Shavit

Lock-Free Implementations

Definition: An object implementation is lock-
free if in an infinite execution infinitely often
some method call finishes (obviously, in a finite
number of steps)

No difference between lock-free and wait-
free for finite executions

11

Concurrency: Foundations and Algorithms —

Example: Set
Properties

➤ Collection of objects

➤ No duplicates

➤ Methods

➤ add() a new object

➤ remove() an object

➤ Test if set contains() object
12

Concurrency: Foundations and Algorithms —

Set Interface

public interface Set {

 public boolean add(Object x);
 public boolean remove(Object x);
 public boolean contains(Object x);
}

13

Concurrency: Foundations and Algorithms —

Set Interface

public interface Set {

 public boolean add(Object x);
 public boolean remove(Object x);
 public boolean contains(Object x);
}

Add object to set

13

Concurrency: Foundations and Algorithms —

Set Interface

public interface Set {

 public boolean add(Object x);
 public boolean remove(Object x);
 public boolean contains(Object x);
}

Remove object
from set

13

Concurrency: Foundations and Algorithms —

Set Interface

public interface Set {

 public boolean add(Object x);
 public boolean remove(Object x);
 public boolean contains(Object x);
} Is object in set?

13

Concurrency: Foundations and Algorithms —

Linked List

➤ Illustrate these patterns…

➤ Using a list-based Set

➤ Common data structure

➤ Building block for other apps

14

Concurrency: Foundations and Algorithms —

List Node

public class Node {

 Object object;
 int key;
 Node next;
}

15

Concurrency: Foundations and Algorithms —

List Node

public class Node {

 Object object;
 int key;
 Node next;
}

Object of interest

15

Concurrency: Foundations and Algorithms —

List Node

public class Node {

 Object object;
 int key;
 Node next;
}

Usually hash code

15

Concurrency: Foundations and Algorithms —

List Node

public class Node {

 Object object;
 int key;
 Node next;
}

Reference to next node

15

Concurrency: Foundations and Algorithms —

The List-Based Set

a-∞ ∞b c

16

Concurrency: Foundations and Algorithms —

The List-Based Set

a-∞ ∞b c

Ordered + sentinel nodes
(min & max possible keys)

16

Concurrency: Foundations and Algorithms —

Reasoning about
Concurrent Data Structures

➤ Identify invariants
➤ Properties that always holds

➤ True when object is created
➤ Truth preserved by each method

➤ add(), remove(), contains()
➤ Each step of each method

➤ Most steps are trivial
➤ Usually one step tricky
➤ Often linearization point

17

Concurrency: Foundations and Algorithms —

Interference

➤ Proof that invariants are preserved works if methods
considered are the only modifiers

➤ Language encapsulation helps

➤ List nodes not visible outside class

➤ Freedom from interference needed even for removed nodes

➤ Some algorithms traverse removed nodes

➤ Careful with malloc() and free()!

➤ Garbage-collection helps here
18

Concurrency: Foundations and Algorithms —

Blame Game

➤ Suppose

➤ add() leaves behind 2 copies of x

➤ remove() removes only 1

➤ Which one is incorrect?

➤ If invariant says no duplicates

➤ add() is incorrect

➤ Otherwise

➤ remove() is incorrect
19

Concurrency: Foundations and Algorithms —

Set Invariant (Partly)

➤ Sentinel nodes

➤ Tail reachable from head

➤ Sorted

➤ No duplicates

20

Concurrency: Foundations and Algorithms —

Sequential List Based Set

add(b)

a-∞ ∞c d

21

Concurrency: Foundations and Algorithms —

Sequential List Based Set

add(b)

a-∞ ∞c d

b

21

Concurrency: Foundations and Algorithms —

Sequential List Based Set

add(b)

a-∞ ∞c d

b

21

Concurrency: Foundations and Algorithms —

Sequential List Based Set

add(b)

a-∞ ∞c d

b

remove(b)

a-∞ ∞b c

21

Concurrency: Foundations and Algorithms —

Sequential List Based Set

add(b)

a-∞ ∞c d

b

remove(b)

a-∞ ∞b c

21

Concurrency: Foundations and Algorithms —

Coarse-Grained Locking

a-∞ ∞c d

22

Concurrency: Foundations and Algorithms —

Coarse-Grained Locking

a-∞ ∞c d

22

add(b)

Concurrency: Foundations and Algorithms —

Coarse-Grained Locking

a-∞ ∞c d

22

add(b)

Concurrency: Foundations and Algorithms —

Coarse-Grained Locking

b

a-∞ ∞c d

22

add(b)

Concurrency: Foundations and Algorithms —

Coarse-Grained Locking

b

a-∞ ∞c d

22

add(b)

Concurrency: Foundations and Algorithms —

Coarse-Grained Locking

b

a-∞ ∞c d

22

Simple but hotspot + bottleneck

add(b)

Concurrency: Foundations and Algorithms —

1. Coarse-Grained Locking

➤ Easy, same as synchronized methods

➤ “One lock to rule them all…”

➤ Simple, clearly correct

➤ Deserves respect!

➤ Works poorly with contention

➤ Queue locks help

➤ But bottleneck still an issue
23

Concurrency: Foundations and Algorithms —

2. Fine-grained Locking

➤ Requires careful thought

➤ “Do not meddle in the affairs of wizards, for they
are subtle and quick to anger”

➤ Split object into pieces

➤ Each piece has own lock

➤ Methods that work on disjoint pieces need not
exclude each other

24

Concurrency: Foundations and Algorithms —

Hand-over-Hand Locking

a-∞ ∞b c

25

Concurrency: Foundations and Algorithms —

Hand-over-Hand Locking

a-∞ ∞b c

25

Concurrency: Foundations and Algorithms —

Hand-over-Hand Locking

a-∞ ∞b c

25

Concurrency: Foundations and Algorithms —

Hand-over-Hand Locking

a-∞ ∞b c

25

Concurrency: Foundations and Algorithms —

Hand-over-Hand Locking

a-∞ ∞b c

25

Concurrency: Foundations and Algorithms —

Hand-over-Hand Locking

a-∞ ∞b c

25

Concurrency: Foundations and Algorithms —

Hand-over-Hand Locking

a-∞ ∞b c

25

Concurrency: Foundations and Algorithms —

Hand-over-Hand Locking

a-∞ ∞b c

25

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

26

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

26

remove(b)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

26

remove(b)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

26

remove(b)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

26

remove(b)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

26

remove(b)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞c

26

remove(b)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞c

26

remove(b)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

27

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

27

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

27

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

27

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

27

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

27

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

27

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

27

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

27

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

27

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

27

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞c

27

remove(b) remove(c)

Uh, oh!

Still in list

Concurrency: Foundations and Algorithms —

Problem

➤ To delete node b
➤ Swing node a’s next field to c

➤ Problem is
➤ Someone could delete c concurrently

28

a b c

a b c

Concurrency: Foundations and Algorithms —

Insight

➤ If a node is locked

➤ No one can delete node’s successor

➤ If a thread locks

➤ The node to be deleted

➤ And its predecessor

➤ Then it works

29

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

30

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

30

remove(b)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

30

remove(b)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

30

remove(b)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

30

remove(b)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

30

remove(b)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

30

remove(b)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞c

30

remove(b)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b c

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞b

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Hand-over-Hand Again

a-∞ ∞

31

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

Remove

32

public boolean remove(Object object) {
 int key = object.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }

}

Concurrency: Foundations and Algorithms —

Remove

32

public boolean remove(Object object) {
 int key = object.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }

}

Key used to order node

Concurrency: Foundations and Algorithms —

Remove

32

public boolean remove(Object object) {
 int key = object.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }

}

Predecessor and current nodes

Concurrency: Foundations and Algorithms —

Remove

32

public boolean remove(Object object) {
 int key = object.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }

}

Make sure locks released

Concurrency: Foundations and Algorithms —

Remove

32

public boolean remove(Object object) {
 int key = object.hashCode();
 Node pred, curr;
 try {
 …
 } finally {
 curr.unlock();
 pred.unlock();
 }

}

Everything else

Concurrency: Foundations and Algorithms —

Remove

33

try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …

} finally { … }

Concurrency: Foundations and Algorithms —

Remove

33

try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …

} finally { … }

Lock previous

Concurrency: Foundations and Algorithms —

Remove

33

try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …

} finally { … }

Lock current

Concurrency: Foundations and Algorithms —

Remove

33

try {
 pred = this.head;
 pred.lock();
 curr = pred.next;
 curr.lock();
 …

} finally { … }
Traverse the list

Concurrency: Foundations and Algorithms —

Remove: Searching

34

 while (curr.key <= key) {

 if (object == curr.object) {

 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Concurrency: Foundations and Algorithms —

Remove: Searching

34

 while (curr.key <= key) {

 if (object == curr.object) {

 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Search key range (curr and
pred locked)

Concurrency: Foundations and Algorithms —

Remove: Searching

34

 while (curr.key <= key) {

 if (object == curr.object) {

 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

If node found,
remove it

Concurrency: Foundations and Algorithms —

Remove: Searching

34

 while (curr.key <= key) {

 if (object == curr.object) {

 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Unlock predecessor and demote current
(only one node locked!)

Concurrency: Foundations and Algorithms —

Remove: Searching

34

 while (curr.key <= key) {

 if (object == curr.object) {

 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false;

Find and lock new current

Concurrency: Foundations and Algorithms —

Remove: Searching

34

 while (curr.key <= key) {

 if (object == curr.object) {

 pred.next = curr.next;
 return true;
 }
 pred.unlock();
 pred = curr;
 curr = curr.next;
 curr.lock();
 }
 return false; Otherwise not present

Concurrency: Foundations and Algorithms —

Adding Nodes

➤ To add node b
➤ Lock predecessor
➤ Lock successor

➤ Neither can be deleted

35

Concurrency: Foundations and Algorithms —

Drawbacks

➤ Better than coarse-grained lock
➤ Threads can traverse in parallel

➤ Still not ideal
➤ Long chain of acquire/release
➤ Threads cannot overtake one another
➤ Inefficient

36

© Herlihy-Shavit

Linked List Lecture

➤ Five approaches to concurrent data structure design:

➤ Coarse-grained locking

➤ Fine-grained locking

➤ Optimistic synchronization

➤ Lazy synchronization

➤ Lock-free synchronization

37

© Herlihy-Shavit

List-based Set
➤ We used an ordered list to implement a Set:

➤ An unordered collection of objects
➤ No duplicates
➤ Methods:

➤ add() a new object
➤ remove() an object
➤ Test if set contains() object

38

© Herlihy-Shavit

Course Grained Locking

a b d

c

Simple but hotspot + bottleneck

39

© Herlihy-Shavit

Fine Grained Locking

a b d

➤ Allows concurrency but everyone always
delayed by front guy = bottleneck

➤ Lock acquisition overhead

40

© Herlihy-Shavit

Optimistic List

b c ea

➤ Limited Hotspots (Only at locked
Add(), Remove(), Contains()
destination locations, not traversals)

➤ But two traversals

➤ Yet traversals are wait-free!

© Herlihy-Shavit

Lazy List

a 0 0 0a b c 0e1d

Lazy Add() and Remove() + Wait-free Contains()

© Herlihy-Shavit

Lock-free List

a 0 0 0a b c 0e1c

➤ Add() and Remove() physically remove marked
nodes

➤ Wait-free contains() traverses both marked and
removed nodes

Concurrency: Foundations and Algorithms —

3. Optimistic Synchronization

➤ Find nodes without locking

➤ Lock nodes

➤ Check that everything is OK

44

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

45

remove(b) remove(c)

Uh, oh!

Still in list

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

46

remove(c)

Check that
node still
accessible

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

b

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

b

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

b

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

b

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

b

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

47

insert(b) remove(c)

Uh, oh!

Not in list

b

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞c d

48

remove(c)

b

Check that
nodes still
adjacent

Concurrency: Foundations and Algorithms —

Optimistic Fine Grained

➤ To remove c

➤ Optimistically traverse list to find c

➤ Lock c.pred then lock c.curr

➤ Re-Traverse list to find c and verify that c.pred precedes c.curr

➤ Perform removal and release locks
49

a-∞ ∞b c

Concurrency: Foundations and Algorithms —

Optimistic Fine Grained

➤ To remove c

➤ Optimistically traverse list to find c

➤ Lock c.pred then lock c.curr

➤ Re-Traverse list to find c and verify that c.pred precedes c.curr

➤ Perform removal and release locks
49

a-∞ ∞b c

1

Concurrency: Foundations and Algorithms —

Optimistic Fine Grained

➤ To remove c

➤ Optimistically traverse list to find c

➤ Lock c.pred then lock c.curr

➤ Re-Traverse list to find c and verify that c.pred precedes c.curr

➤ Perform removal and release locks
49

a-∞ ∞b c

1 2 2

Concurrency: Foundations and Algorithms —

Optimistic Fine Grained

➤ To remove c

➤ Optimistically traverse list to find c

➤ Lock c.pred then lock c.curr

➤ Re-Traverse list to find c and verify that c.pred precedes c.curr

➤ Perform removal and release locks
49

a-∞ ∞b c

1
3

2 2
3

Concurrency: Foundations and Algorithms —

Optimistic Fine Grained

➤ To remove c

➤ Optimistically traverse list to find c

➤ Lock c.pred then lock c.curr

➤ Re-Traverse list to find c and verify that c.pred precedes c.curr

➤ Perform removal and release locks
49

a-∞ ∞b c

1
3

2 2
3

4

Concurrency: Foundations and Algorithms —

Correctness

➤ If

➤ Nodes b and c both locked

➤ Node b still accessible

➤ Node c still successor to b

➤ Then

➤ Neither has been deleted

➤ OK to delete c and return true
50

Concurrency: Foundations and Algorithms —

Removing an Absent Node

a-∞ ∞c d

51

remove(b)

Concurrency: Foundations and Algorithms —

Removing an Absent Node

a-∞ ∞c d

51

remove(b)

Concurrency: Foundations and Algorithms —

Removing an Absent Node

a-∞ ∞c d

51

remove(b)

Concurrency: Foundations and Algorithms —

Removing an Absent Node

a-∞ ∞c d

51

remove(b)

Concurrency: Foundations and Algorithms —

Removing an Absent Node

a-∞ ∞c d

51

remove(b)

Concurrency: Foundations and Algorithms —

Removing an Absent Node

a-∞ ∞c d

51

remove(b)

Concurrency: Foundations and Algorithms —

Removing an Absent Node

a-∞ ∞c d

51

remove(b)

Check that
node still
accessible

Concurrency: Foundations and Algorithms —

Removing an Absent Node

a-∞ ∞c d

51

remove(b)

Check that
nodes still
adjacent

Concurrency: Foundations and Algorithms —

Removing an Absent Node

a-∞ ∞c d

51

remove(b)

Return false

Concurrency: Foundations and Algorithms —

Removing an Absent Node

a-∞ ∞c d

51

remove(b)

Return false

Concurrency: Foundations and Algorithms —

Correctness

➤ If

➤ Nodes a and c both locked

➤ Node a still accessible

➤ Node c still successor to a

➤ Then

➤ Neither has been deleted

➤ No thread can add b after a while a is locked

➤ OK to return false
52

Concurrency: Foundations and Algorithms —

Validation

53

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Concurrency: Foundations and Algorithms —

Validation

53

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Predecessor & current nodes

Concurrency: Foundations and Algorithms —

Validation

53

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Start at the beginning

Concurrency: Foundations and Algorithms —

Validation

53

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Search range of keys

Concurrency: Foundations and Algorithms —

Validation

53

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Predecessor reachable?

Concurrency: Foundations and Algorithms —

Validation

53

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Current node next?

Concurrency: Foundations and Algorithms —

Validation

53

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Otherwise move on

Concurrency: Foundations and Algorithms —

Validation

53

private boolean
 validate(Node pred,
 Node curr) {
 Node node = head;
 while (node.key <= pred.key) {
 if (node == pred)
 return pred.next == curr;
 node = node.next;
 }
 return false;
}

Predecessor not reachable

Concurrency: Foundations and Algorithms —

Remove: Searching

54

public boolean remove(Object object) {
 int key = object.hashCode();
 while (true) {
 Node pred = this.head;
 Node curr = pred.next;
 while (curr.key <= key) {
 if (object == curr.object)
 break;
 pred = curr;
 curr = curr.next;
 }

 …

Concurrency: Foundations and Algorithms —

Remove: Searching

54

public boolean remove(Object object) {
 int key = object.hashCode();
 while (true) {
 Node pred = this.head;
 Node curr = pred.next;
 while (curr.key <= key) {
 if (object == curr.object)
 break;
 pred = curr;
 curr = curr.next;
 }

 …

Search key

Concurrency: Foundations and Algorithms —

Remove: Searching

54

public boolean remove(Object object) {
 int key = object.hashCode();
 while (true) {
 Node pred = this.head;
 Node curr = pred.next;
 while (curr.key <= key) {
 if (object == curr.object)
 break;
 pred = curr;
 curr = curr.next;
 }

 …

Retry on synchronization conflict

Concurrency: Foundations and Algorithms —

Remove: Searching

54

public boolean remove(Object object) {
 int key = object.hashCode();
 while (true) {
 Node pred = this.head;
 Node curr = pred.next;
 while (curr.key <= key) {
 if (object == curr.object)
 break;
 pred = curr;
 curr = curr.next;
 }

 …

Examine predecessor and
current nodes

Concurrency: Foundations and Algorithms —

Remove: Searching

54

public boolean remove(Object object) {
 int key = object.hashCode();
 while (true) {
 Node pred = this.head;
 Node curr = pred.next;
 while (curr.key <= key) {
 if (object == curr.object)
 break;
 pred = curr;
 curr = curr.next;
 }

 …

Search by key

Concurrency: Foundations and Algorithms —

Remove: Searching

54

public boolean remove(Object object) {
 int key = object.hashCode();
 while (true) {
 Node pred = this.head;
 Node curr = pred.next;
 while (curr.key <= key) {
 if (object == curr.object)
 break;
 pred = curr;
 curr = curr.next;
 }

 …

Stop if we find object

Concurrency: Foundations and Algorithms —

Remove: Searching

54

public boolean remove(Object object) {
 int key = object.hashCode();
 while (true) {
 Node pred = this.head;
 Node curr = pred.next;
 while (curr.key <= key) {
 if (object == curr.object)
 break;
 pred = curr;
 curr = curr.next;
 }

 …

Move along

Concurrency: Foundations and Algorithms —

On Exit from Loop

➤ If object is present

➤ curr holds object

➤ pred just before curr

➤ If object is absent

➤ curr has first higher key

➤ pred just before curr

➤ Assuming no synchronization problems
55

Concurrency: Foundations and Algorithms —

Remove

56

try {
 pred.lock(); curr.lock();
 if (validate(pred, curr)) {
 if (curr.object == object) {
 pred.next = curr.next;
 return true;
 } else
 return false;
 }

} finally {
pred.unlock(); curr.unlock();

} …

Concurrency: Foundations and Algorithms —

Remove

56

try {
 pred.lock(); curr.lock();
 if (validate(pred, curr)) {
 if (curr.object == object) {
 pred.next = curr.next;
 return true;
 } else
 return false;
 }

} finally {
pred.unlock(); curr.unlock();

} …

Always unlock

Concurrency: Foundations and Algorithms —

Remove

56

try {
 pred.lock(); curr.lock();
 if (validate(pred, curr)) {
 if (curr.object == object) {
 pred.next = curr.next;
 return true;
 } else
 return false;
 }

} finally {
pred.unlock(); curr.unlock();

} …

Lock both nodes

Concurrency: Foundations and Algorithms —

Remove

56

try {
 pred.lock(); curr.lock();
 if (validate(pred, curr)) {
 if (curr.object == object) {
 pred.next = curr.next;
 return true;
 } else
 return false;
 }

} finally {
pred.unlock(); curr.unlock();

} …

Check for synchronization
conflicts

Concurrency: Foundations and Algorithms —

Remove

56

try {
 pred.lock(); curr.lock();
 if (validate(pred, curr)) {
 if (curr.object == object) {
 pred.next = curr.next;
 return true;
 } else
 return false;
 }

} finally {
pred.unlock(); curr.unlock();

} …

Object found,
remove node

Concurrency: Foundations and Algorithms —

Remove

56

try {
 pred.lock(); curr.lock();
 if (validate(pred, curr)) {
 if (curr.object == object) {
 pred.next = curr.next;
 return true;
 } else
 return false;
 }

} finally {
pred.unlock(); curr.unlock();

} …

Object not found

Concurrency: Foundations and Algorithms —

Summary: Optimistic List

➤ Wait-free traversal

➤ May traverse removed nodes

➤ Must have non-interference (natural in languages with GC like
Java)

➤ Limited hotspots

➤ Only at locked add(), remove(), contains() destination locations,
not traversals

➤ But two traversals

➤ Yet traversals are wait-free
57

Concurrency: Foundations and Algorithms —

So Far, So Good

➤ Much less lock acquisition/release

➤ Performance

➤ Concurrency

➤ Problems

➤ Need to traverse list twice

➤ contains() acquires locks

➤ Most common method call (90% in many applications)

➤ Optimistic works if

➤ Cost of scanning twice without locks <
cost of scanning once with locks

58

Concurrency: Foundations and Algorithms —

Lazy List

➤ Like optimistic, except

➤ Scan once

➤ contains() never locks

➤ Key insight

➤ Removing nodes causes trouble

➤ Do it “lazily”

59

Concurrency: Foundations and Algorithms —

Lazy List

➤ Remove Method

➤ Scans list (as before)

➤ Locks predecessor & current (as before)

➤ Logical delete

➤ Marks current node as removed (new!)

➤ Use additional mark bit in node

➤ Physical delete

➤ Redirects predecessor’s next (as before)
60

Concurrency: Foundations and Algorithms —

Lazy Removal

➤ To remove c

➤ Optimistically traverse list to find c

➤ Lock c.pred then lock c.curr

➤ Verify marks and that c.pred precedes c.curr

➤ Set mark bit (logical removal)

➤ Perform physical removal and release locks

61

a 0-∞ ∞b c0 0 0 0

Mark bit (1 if node deleted)

Concurrency: Foundations and Algorithms —

Lazy Removal

➤ To remove c

➤ Optimistically traverse list to find c

➤ Lock c.pred then lock c.curr

➤ Verify marks and that c.pred precedes c.curr

➤ Set mark bit (logical removal)

➤ Perform physical removal and release locks

61

a 0-∞ ∞b c

1

0 0 0 0

Mark bit (1 if node deleted)

Concurrency: Foundations and Algorithms —

Lazy Removal

➤ To remove c

➤ Optimistically traverse list to find c

➤ Lock c.pred then lock c.curr

➤ Verify marks and that c.pred precedes c.curr

➤ Set mark bit (logical removal)

➤ Perform physical removal and release locks

61

a 0-∞ ∞b c

1 2 2

0 0 0 0

Mark bit (1 if node deleted)

Concurrency: Foundations and Algorithms —

Lazy Removal

➤ To remove c

➤ Optimistically traverse list to find c

➤ Lock c.pred then lock c.curr

➤ Verify marks and that c.pred precedes c.curr

➤ Set mark bit (logical removal)

➤ Perform physical removal and release locks

61

a 0-∞ ∞b c

1 2 2
3

0 0 0 0

Mark bit (1 if node deleted)

Concurrency: Foundations and Algorithms —

Lazy Removal

➤ To remove c

➤ Optimistically traverse list to find c

➤ Lock c.pred then lock c.curr

➤ Verify marks and that c.pred precedes c.curr

➤ Set mark bit (logical removal)

➤ Perform physical removal and release locks

61

a 0-∞ ∞b c

1 2 2
3

0 0 0 0

Mark bit (1 if node deleted)

1
4

Concurrency: Foundations and Algorithms —

Lazy Removal

➤ To remove c

➤ Optimistically traverse list to find c

➤ Lock c.pred then lock c.curr

➤ Verify marks and that c.pred precedes c.curr

➤ Set mark bit (logical removal)

➤ Perform physical removal and release locks

61

a 0-∞ ∞b c

1 2 2
3

5

0 0 0 0

Mark bit (1 if node deleted)

1
4

Concurrency: Foundations and Algorithms —

Lazy List

➤ All Methods

➤ Scan through locked and marked nodes

➤ Removing a node does not slow down other method calls…

➤ Must still lock pred and curr nodes

➤ Validation

➤ No need to rescan list!

➤ Check that pred is not marked

➤ Check that curr is not marked

➤ Check that pred points to curr
62

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

1

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

1

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

1

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

1

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

63

remove(b) remove(c)

Mark bit set:
restart

1

Concurrency: Foundations and Algorithms —

Validation

64

private boolean
 validate(Node pred,
 Node curr) {
 return
 !pred.marked &&
 !curr.marked &&
 pred.next == curr;
}

Concurrency: Foundations and Algorithms —

Validation

64

private boolean
 validate(Node pred,
 Node curr) {
 return
 !pred.marked &&
 !curr.marked &&
 pred.next == curr;
}

Predecessor not logically removed

Concurrency: Foundations and Algorithms —

Validation

64

private boolean
 validate(Node pred,
 Node curr) {
 return
 !pred.marked &&
 !curr.marked &&
 pred.next == curr;
}

Current not logically removed

Concurrency: Foundations and Algorithms —

Validation

64

private boolean
 validate(Node pred,
 Node curr) {
 return
 !pred.marked &&
 !curr.marked &&
 pred.next == curr;
}

Predecessor still points to current

Concurrency: Foundations and Algorithms —

Remove

65

try {
 pred.lock(); curr.lock();
 if (validate(pred, curr) {
 if (curr.object == object) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else return false;
 }

} finally {
pred.unlock(); curr.unlock();

} …

Concurrency: Foundations and Algorithms —

Remove

65

try {
 pred.lock(); curr.lock();
 if (validate(pred, curr) {
 if (curr.object == object) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else return false;
 }

} finally {
pred.unlock(); curr.unlock();

} …

Validate as before

Concurrency: Foundations and Algorithms —

Remove

65

try {
 pred.lock(); curr.lock();
 if (validate(pred, curr) {
 if (curr.object == object) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else return false;
 }

} finally {
pred.unlock(); curr.unlock();

} …

Object found

Concurrency: Foundations and Algorithms —

Remove

65

try {
 pred.lock(); curr.lock();
 if (validate(pred, curr) {
 if (curr.object == object) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else return false;
 }

} finally {
pred.unlock(); curr.unlock();

} …

Logical removal

Concurrency: Foundations and Algorithms —

Remove

65

try {
 pred.lock(); curr.lock();
 if (validate(pred, curr) {
 if (curr.object == object) {
 curr.marked = true;
 pred.next = curr.next;
 return true;
 } else return false;
 }

} finally {
pred.unlock(); curr.unlock();

} …

Physical removal

Concurrency: Foundations and Algorithms —

Contains

66

public boolean contains(Object object) {
 int key = object.hashCode();
 Node curr = this.head;
 while (curr.key <= key) {
 if (object == curr.object)

 break;
 curr = curr.next;
 }
 return object == curr.object && !curr.marked;
}

Concurrency: Foundations and Algorithms —

Contains

66

public boolean contains(Object object) {
 int key = object.hashCode();
 Node curr = this.head;
 while (curr.key <= key) {
 if (object == curr.object)

 break;
 curr = curr.next;
 }
 return object == curr.object && !curr.marked;
}

Start at the head

Concurrency: Foundations and Algorithms —

Contains

66

public boolean contains(Object object) {
 int key = object.hashCode();
 Node curr = this.head;
 while (curr.key <= key) {
 if (object == curr.object)

 break;
 curr = curr.next;
 }
 return object == curr.object && !curr.marked;
}

Traverse without
locking
(nodes may have
been removed)

Concurrency: Foundations and Algorithms —

Contains

66

public boolean contains(Object object) {
 int key = object.hashCode();
 Node curr = this.head;
 while (curr.key <= key) {
 if (object == curr.object)

 break;
 curr = curr.next;
 }
 return object == curr.object && !curr.marked;
}

Present and undeleted?

Concurrency: Foundations and Algorithms —

Summary: Lazy List

➤ Wait-free traversal uses mark bit + fact that list is
ordered

➤ Not marked ⇒ in the set

➤ Marked or missing ⇒ not in the set

➤ Lazy add()

➤ Lazy remove()

➤ Wait-free contains()
67

Concurrency: Foundations and Algorithms —

Evaluation

➤ Good

➤ contains() does not need to lock

➤ In fact, it is wait-free!

➤ Good because it is typically called often

➤ Uncontended calls do not re-traverse

➤ Bad

➤ Contended calls do re-traverse

➤ Traffic jam if one thread delays
68

Concurrency: Foundations and Algorithms —

Traffic Jam

➤ Any concurrent data structure based on mutual
exclusion has a weakness

➤ If one thread

➤ Enters critical section

➤ And “eats the big muffin” (stops running)

➤ Cache miss, page fault, de-scheduled…

➤ Everyone else using that lock is stuck!
69

Concurrency: Foundations and Algorithms 70

Wait/Lock/Obstruction Freedom

“All thread always
makes progress”

vs.
“Some thread always

makes progress”
vs.

“Any thread that runs by itself
for long enough makes progress”

Wait
freedom

Lock
freedom

Obstruction
freedom

Guarantees per-thread
progress

Guarantees system-
wide progress

Concurrency: Foundations and Algorithms —

Lock-Free Data Structures

➤ No matter what…

➤ Some thread will complete method call

➤ Even if others halt at malicious times

➤ Weaker than wait-free, yet

➤ Implies that

➤ You cannot use locks

➤ Um, that is why they call it lock-free
71

Foundation of Concurrent and Distributed Systems

RMW Atomic Operations

➤ Read-modify-write operation combines…

➤ Read from memory

➤ Modify value

➤ Write to memory

➤ … atomically

➤ Supported by modern processors

➤ Atomic increment/decrement, test-and-set, compare-and-set, etc.

➤ In Java: java.util.concurrent.atomic
72

Foundation of Concurrent and Distributed Systems

Atomic-Inc/Dec

public class AtomicInteger {

 int value;

 public synchronized int
 incrementAndGet() {
 value = value + 1;
 return value;
 }
 public synchronized int
 decrementAndGet() {

 return --value;
 }
}

73

Foundation of Concurrent and Distributed Systems

Atomic-Inc/Dec

public class AtomicInteger {

 int value;

 public synchronized int
 incrementAndGet() {
 value = value + 1;
 return value;
 }
 public synchronized int
 decrementAndGet() {

 return --value;
 }
}

Package

java.util.concurrent.atomic

73

Foundation of Concurrent and Distributed Systems

Atomic-Inc/Dec

public class AtomicInteger {

 int value;

 public synchronized int
 incrementAndGet() {
 value = value + 1;
 return value;
 }
 public synchronized int
 decrementAndGet() {

 return --value;
 }
}

Increment value

73

Foundation of Concurrent and Distributed Systems

Atomic-Inc/Dec

public class AtomicInteger {

 int value;

 public synchronized int
 incrementAndGet() {
 value = value + 1;
 return value;
 }
 public synchronized int
 decrementAndGet() {

 return --value;
 }
}

Decrement value
(pre-decrement
operator is not
atomic!)

73

Foundation of Concurrent and Distributed Systems

Atomic-Inc/Dec

public class AtomicInteger {

 int value;

 public synchronized int
 incrementAndGet() {
 value = value + 1;
 return value;
 }
 public synchronized int
 decrementAndGet() {

 return --value;
 }
}

Decrement value
(pre-decrement
operator is not
atomic!)

; x86
LOCK INC …
LOCK DEC …
LOCK XADD …

73

Foundation of Concurrent and Distributed Systems

Get-and-Set

public class AtomicBoolean {
 boolean value;

 public synchronized boolean
 getAndSet(boolean newValue) {
 boolean prior = value;
 value = newValue;
 return prior;
 }
}

74

Foundation of Concurrent and Distributed Systems

Get-and-Set

public class AtomicBoolean {
 boolean value;

 public synchronized boolean
 getAndSet(boolean newValue) {
 boolean prior = value;
 value = newValue;
 return prior;
 }
}

Set new value and
return old value

74

Foundation of Concurrent and Distributed Systems

Get-and-Set

public class AtomicBoolean {
 boolean value;

 public synchronized boolean
 getAndSet(boolean newValue) {
 boolean prior = value;
 value = newValue;
 return prior;
 }
}

Set new value and
return old value

; x86
LOCK XCHG …

74

Foundation of Concurrent and Distributed Systems

Compare-and-Set

public class AtomicInteger {

 int value;

 public synchronized boolean
 compareAndSet(int expValue,
 int newValue) {
 if (value == expValue) {

 value = newValue;
 return true;
 }
 return false;
 }
}

75

Foundation of Concurrent and Distributed Systems

Compare-and-Set

public class AtomicInteger {

 int value;

 public synchronized boolean
 compareAndSet(int expValue,
 int newValue) {
 if (value == expValue) {

 value = newValue;
 return true;
 }
 return false;
 }
}

Set new value and return
true if old value matches
expected value, return
false otherwise

75

Foundation of Concurrent and Distributed Systems

Compare-and-Set

public class AtomicInteger {

 int value;

 public synchronized boolean
 compareAndSet(int expValue,
 int newValue) {
 if (value == expValue) {

 value = newValue;
 return true;
 }
 return false;
 }
}

Set new value and return
true if old value matches
expected value, return
false otherwise

; x86
LOCK CMPXCHG …

75

Concurrency: Foundations and Algorithms —

Lock-Free Lists

➤ Next logical step

➤ Eliminate locking entirely

➤ contains() wait-free and add() and remove() lock-free

➤ Use only compareAndSet() to atomically update links

76

Concurrency: Foundations and Algorithms —

Adding a Node

a-∞ ∞c d

77

Concurrency: Foundations and Algorithms —

Adding a Node

b

a-∞ ∞c d

77

Concurrency: Foundations and Algorithms —

Adding a Node

b

a-∞ ∞c d

77

CAS

Concurrency: Foundations and Algorithms —

Adding a Node

b

a-∞ ∞c d

77

CAS

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

78

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

78

CAS

Concurrency: Foundations and Algorithms —

Removing a Node

a-∞ ∞b c

78

CAS

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

79

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

79

remove(b) remove(c)

CAS CAS

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

79

remove(b) remove(c)

CAS CAS

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

a-∞ ∞b c

79

remove(b) remove(c)

Uh, oh!

Still in list

CAS CAS

Concurrency: Foundations and Algorithms —

What Could Go Wrong?

➤ Problem

➤ Method updates node’s next field after node has been removed

➤ Solution

➤ Use AtomicMarkableReference

➤ Atomically

➤ Swing reference and update flag

➤ Remove in two steps

➤ Set mark bit in next field

➤ Redirect predecessor’s pointer
80

Concurrency: Foundations and Algorithms —

Marking a Node

➤ AtomicMarkableReference class

➤ In package java.util.concurrent.atomic

➤ Holds a reference and a mark bit

81

address f

Concurrency: Foundations and Algorithms —

Marking a Node

➤ AtomicMarkableReference class

➤ In package java.util.concurrent.atomic

➤ Holds a reference and a mark bit

81

address f

Reference

Concurrency: Foundations and Algorithms —

Marking a Node

➤ AtomicMarkableReference class

➤ In package java.util.concurrent.atomic

➤ Holds a reference and a mark bit

81

address f

Reference Mark bit

Concurrency: Foundations and Algorithms —

AtomicMarkableReference

82

public class AtomicMarkableReference <T> {
 public T get(boolean[] marked);
 public boolean compareAndSet(

 T expectedRef,
 T updateRef,

 boolean expectedMark,
 boolean updateMark);
 public boolean attemptMark(

 T expectedRef,
 boolean updateMark);
 …

}

Concurrency: Foundations and Algorithms —

AtomicMarkableReference

82

public class AtomicMarkableReference <T> {
 public T get(boolean[] marked);
 public boolean compareAndSet(

 T expectedRef,
 T updateRef,

 boolean expectedMark,
 boolean updateMark);
 public boolean attemptMark(

 T expectedRef,
 boolean updateMark);
 …

}

Data type

Concurrency: Foundations and Algorithms —

AtomicMarkableReference

82

public class AtomicMarkableReference <T> {
 public T get(boolean[] marked);
 public boolean compareAndSet(

 T expectedRef,
 T updateRef,

 boolean expectedMark,
 boolean updateMark);
 public boolean attemptMark(

 T expectedRef,
 boolean updateMark);
 …

}

Extract reference and
mark (at index 0)

Concurrency: Foundations and Algorithms —

AtomicMarkableReference

82

public class AtomicMarkableReference <T> {
 public T get(boolean[] marked);
 public boolean compareAndSet(

 T expectedRef,
 T updateRef,

 boolean expectedMark,
 boolean updateMark);
 public boolean attemptMark(

 T expectedRef,
 boolean updateMark);
 …

}

If this is the current reference…

Concurrency: Foundations and Algorithms —

AtomicMarkableReference

82

public class AtomicMarkableReference <T> {
 public T get(boolean[] marked);
 public boolean compareAndSet(

 T expectedRef,
 T updateRef,

 boolean expectedMark,
 boolean updateMark);
 public boolean attemptMark(

 T expectedRef,
 boolean updateMark);
 …

}

If this is the current reference…

…and this is the current mark…

Concurrency: Foundations and Algorithms —

AtomicMarkableReference

82

public class AtomicMarkableReference <T> {
 public T get(boolean[] marked);
 public boolean compareAndSet(

 T expectedRef,
 T updateRef,

 boolean expectedMark,
 boolean updateMark);
 public boolean attemptMark(

 T expectedRef,
 boolean updateMark);
 …

}

…then change to this new reference…

Concurrency: Foundations and Algorithms —

AtomicMarkableReference

82

public class AtomicMarkableReference <T> {
 public T get(boolean[] marked);
 public boolean compareAndSet(

 T expectedRef,
 T updateRef,

 boolean expectedMark,
 boolean updateMark);
 public boolean attemptMark(

 T expectedRef,
 boolean updateMark);
 …

}

…then change to this new reference…

…and this new mark

Concurrency: Foundations and Algorithms —

AtomicMarkableReference

82

public class AtomicMarkableReference <T> {
 public T get(boolean[] marked);
 public boolean compareAndSet(

 T expectedRef,
 T updateRef,

 boolean expectedMark,
 boolean updateMark);
 public boolean attemptMark(

 T expectedRef,
 boolean updateMark);
 …

}

If this is the current reference…

Concurrency: Foundations and Algorithms —

AtomicMarkableReference

82

public class AtomicMarkableReference <T> {
 public T get(boolean[] marked);
 public boolean compareAndSet(

 T expectedRef,
 T updateRef,

 boolean expectedMark,
 boolean updateMark);
 public boolean attemptMark(

 T expectedRef,
 boolean updateMark);
 …

}

…then change to this new mark

Concurrency: Foundations and Algorithms —

0 0 0 0 0

Removing a Node

a-∞ ∞b c

83

Concurrency: Foundations and Algorithms —

0 0 0 0 0

Removing a Node

a-∞ ∞b c

83

1

1

Concurrency: Foundations and Algorithms —

0 0 0 0 0

Removing a Node

a-∞ ∞b c

83

1
CAS

1
2

Concurrency: Foundations and Algorithms —

0 0 0 0 0

Removing a Node

a-∞ ∞b c

83

1
CAS

1
2

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

84

remove(b) remove(c)

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

84

remove(b) remove(c)

1 1

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

84

remove(b) remove(c)

1 1
CAS CAS

Concurrency: Foundations and Algorithms —

0 0 0 0 0

What Could Go Wrong?

a-∞ ∞b c

84

remove(b) remove(c)

1 1
CAS CAS

Failed

Concurrency: Foundations and Algorithms —

0 0 0 0

What Could Go Wrong?

a-∞ ∞c

84

remove(b) remove(c)

1
CAS

Concurrency: Foundations and Algorithms —

0 0 0

What Could Go Wrong?

a-∞ ∞

84

remove(b) remove(c)

CAS

Concurrency: Foundations and Algorithms —

Traversing the List

➤ What do you do when you find a “logically” deleted
node in your path?

➤ Finish the job

➤ CAS the predecessor’s next field

➤ Proceed (repeat as needed)

85

Concurrency: Foundations and Algorithms —

0 0 0 0 0

Lock-Free Traversal

a-∞ ∞b c

86

1

Concurrency: Foundations and Algorithms —

0 0 0 0 0

Lock-Free Traversal

a-∞ ∞b c

86

1

Concurrency: Foundations and Algorithms —

0 0 0 0 0

Lock-Free Traversal

a-∞ ∞b c

86

1

Concurrency: Foundations and Algorithms —

0 0 0 0 0

Lock-Free Traversal

a-∞ ∞b c

86

1

Concurrency: Foundations and Algorithms —

0 0 0 0 0

Lock-Free Traversal

a-∞ ∞b c

86

1

Concurrency: Foundations and Algorithms —

0 0 0 0 0

Lock-Free Traversal

a-∞ ∞b c

86

1

Uh, oh!

Concurrency: Foundations and Algorithms —

0 0 0 0 0

Lock-Free Traversal

a-∞ ∞b c

86

1

Uh, oh!

CAS

Concurrency: Foundations and Algorithms —

0 0 0 0

Lock-Free Traversal

a-∞ ∞c

86

Concurrency: Foundations and Algorithms —

0 0 0 0

Lock-Free Traversal

a-∞ ∞c

86

Concurrency: Foundations and Algorithms —

The Window Class

87

class Window {
 Node pred;
 Node curr;
 Window(Node pred, Node curr) {
 this.pred = pred;
 this.curr = curr;
 }
}

Concurrency: Foundations and Algorithms —

The Window Class

87

class Window {
 Node pred;
 Node curr;
 Window(Node pred, Node curr) {
 this.pred = pred;
 this.curr = curr;
 }
}

A container for predecessor
and current nodes

Concurrency: Foundations and Algorithms —

Using the Find Method

88

…

Window window = find(head, object);
Node pred = window.pred;
Node curr = window.curr;
…

Concurrency: Foundations and Algorithms —

Using the Find Method

88

…

Window window = find(head, object);
Node pred = window.pred;
Node curr = window.curr;
…

Find window

Concurrency: Foundations and Algorithms —

Using the Find Method

88

…

Window window = find(head, object);
Node pred = window.pred;
Node curr = window.curr;
…

Extract pred
and curr

Concurrency: Foundations and Algorithms —

0 0 0

The Find Method

a b c

89

pred curr succ

0 0a c
pred curr=succ

Object in list:

Object not in list:

Window window = find(head, b);
Node pred = window.pred;
Node curr = window.curr;

Concurrency: Foundations and Algorithms —

Remove

90

public boolean remove(T object) {
 boolean b;
 while (true) {
 Window window = find(head, object);
 Node pred = window.pred, curr = window.curr;
 if (curr.object != object)

 return false;
 Node succ = curr.next.getReference();
 b = curr.next.compareAndSet(succ, succ, false, true);
 if (!b) continue;
 pred.next.compareAndSet(curr, succ, false, false);
 return true;
 }

}

Concurrency: Foundations and Algorithms —

Remove

90

public boolean remove(T object) {
 boolean b;
 while (true) {
 Window window = find(head, object);
 Node pred = window.pred, curr = window.curr;
 if (curr.object != object)

 return false;
 Node succ = curr.next.getReference();
 b = curr.next.compareAndSet(succ, succ, false, true);
 if (!b) continue;
 pred.next.compareAndSet(curr, succ, false, false);
 return true;
 }

}

Keep trying

Concurrency: Foundations and Algorithms —

Remove

90

public boolean remove(T object) {
 boolean b;
 while (true) {
 Window window = find(head, object);
 Node pred = window.pred, curr = window.curr;
 if (curr.object != object)

 return false;
 Node succ = curr.next.getReference();
 b = curr.next.compareAndSet(succ, succ, false, true);
 if (!b) continue;
 pred.next.compareAndSet(curr, succ, false, false);
 return true;
 }

}

Find neighbors

Concurrency: Foundations and Algorithms —

Remove

90

public boolean remove(T object) {
 boolean b;
 while (true) {
 Window window = find(head, object);
 Node pred = window.pred, curr = window.curr;
 if (curr.object != object)

 return false;
 Node succ = curr.next.getReference();
 b = curr.next.compareAndSet(succ, succ, false, true);
 if (!b) continue;
 pred.next.compareAndSet(curr, succ, false, false);
 return true;
 }

}

Not there

Concurrency: Foundations and Algorithms —

Remove

90

public boolean remove(T object) {
 boolean b;
 while (true) {
 Window window = find(head, object);
 Node pred = window.pred, curr = window.curr;
 if (curr.object != object)

 return false;
 Node succ = curr.next.getReference();
 b = curr.next.compareAndSet(succ, succ, false, true);
 if (!b) continue;
 pred.next.compareAndSet(curr, succ, false, false);
 return true;
 }

}

Try to mark node

as deleted

Concurrency: Foundations and Algorithms —

Remove

90

public boolean remove(T object) {
 boolean b;
 while (true) {
 Window window = find(head, object);
 Node pred = window.pred, curr = window.curr;
 if (curr.object != object)

 return false;
 Node succ = curr.next.getReference();
 b = curr.next.compareAndSet(succ, succ, false, true);
 if (!b) continue;
 pred.next.compareAndSet(curr, succ, false, false);
 return true;
 }

}

If it fails, retry, otherwise job done

Concurrency: Foundations and Algorithms —

Remove

90

public boolean remove(T object) {
 boolean b;
 while (true) {
 Window window = find(head, object);
 Node pred = window.pred, curr = window.curr;
 if (curr.object != object)

 return false;
 Node succ = curr.next.getReference();
 b = curr.next.compareAndSet(succ, succ, false, true);
 if (!b) continue;
 pred.next.compareAndSet(curr, succ, false, false);
 return true;
 }

}
Try to advance reference
(if it fails, someone else did or will advance it)

Concurrency: Foundations and Algorithms —

Add

91

public boolean add(T object) {
 while (true) {
 Window window = find(head, object);
 Node pred = window.pred, curr = window.curr;
 if (curr.object == object)

 return false;
 Node n = new Node(object);
 n.next = new AtomicMarkableReference(curr, false);
 if (pred.next.compareAndSet(curr, n, false, false))

 return true;
 }

}

Concurrency: Foundations and Algorithms —

Add

91

public boolean add(T object) {
 while (true) {
 Window window = find(head, object);
 Node pred = window.pred, curr = window.curr;
 if (curr.object == object)

 return false;
 Node n = new Node(object);
 n.next = new AtomicMarkableReference(curr, false);
 if (pred.next.compareAndSet(curr, n, false, false))

 return true;
 }

}

Already there

Concurrency: Foundations and Algorithms —

Add

91

public boolean add(T object) {
 while (true) {
 Window window = find(head, object);
 Node pred = window.pred, curr = window.curr;
 if (curr.object == object)

 return false;
 Node n = new Node(object);
 n.next = new AtomicMarkableReference(curr, false);
 if (pred.next.compareAndSet(curr, n, false, false))

 return true;
 }

}

Create new node

Concurrency: Foundations and Algorithms —

Add

91

public boolean add(T object) {
 while (true) {
 Window window = find(head, object);
 Node pred = window.pred, curr = window.curr;
 if (curr.object == object)

 return false;
 Node n = new Node(object);
 n.next = new AtomicMarkableReference(curr, false);
 if (pred.next.compareAndSet(curr, n, false, false))

 return true;
 }

}

Install new node, else retry loop

Concurrency: Foundations and Algorithms —

Wait-Free Contains

92

public boolean contains(T object) {

 boolean marked[] = new boolean[1];
 int key = object.hashCode();
 Node curr = this.head;
 while (curr.key <= key) {

 if (object == curr.object)

 break;
 curr = curr.next;
 }

 curr.next.get(marked);
 return (object == curr.object && !marked[0]);
}

Concurrency: Foundations and Algorithms —

Wait-Free Contains

92

public boolean contains(T object) {

 boolean marked[] = new boolean[1];
 int key = object.hashCode();
 Node curr = this.head;
 while (curr.key <= key) {

 if (object == curr.object)

 break;
 curr = curr.next;
 }

 curr.next.get(marked);
 return (object == curr.object && !marked[0]);
}

Only difference from lazy list is
that we get and check mark

Concurrency: Foundations and Algorithms —

Lock-Free Find

93

public Window find(Node head, T object) {
 Node pred, curr, succ; int key = object.hashCode();
 boolean[] marked = { false }; boolean b;
 retry: while (true) {
 pred = head; curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) { … }
 if ((curr.key == key && curr.object == object) 

 || curr.key > key)

 return new Window(pred, curr);
 pred = curr; curr = succ;
 }
 }

}

Concurrency: Foundations and Algorithms —

Lock-Free Find

93

public Window find(Node head, T object) {
 Node pred, curr, succ; int key = object.hashCode();
 boolean[] marked = { false }; boolean b;
 retry: while (true) {
 pred = head; curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) { … }
 if ((curr.key == key && curr.object == object) 

 || curr.key > key)

 return new Window(pred, curr);
 pred = curr; curr = succ;
 }
 }

}

Restart if list changes while traversed

Concurrency: Foundations and Algorithms —

Lock-Free Find

93

public Window find(Node head, T object) {
 Node pred, curr, succ; int key = object.hashCode();
 boolean[] marked = { false }; boolean b;
 retry: while (true) {
 pred = head; curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) { … }
 if ((curr.key == key && curr.object == object) 

 || curr.key > key)

 return new Window(pred, curr);
 pred = curr; curr = succ;
 }
 }

}

Start

from head

Concurrency: Foundations and Algorithms —

Lock-Free Find

93

public Window find(Node head, T object) {
 Node pred, curr, succ; int key = object.hashCode();
 boolean[] marked = { false }; boolean b;
 retry: while (true) {
 pred = head; curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) { … }
 if ((curr.key == key && curr.object == object) 

 || curr.key > key)

 return new Window(pred, curr);
 pred = curr; curr = succ;
 }
 }

}

Move down the list

Concurrency: Foundations and Algorithms —

Lock-Free Find

93

public Window find(Node head, T object) {
 Node pred, curr, succ; int key = object.hashCode();
 boolean[] marked = { false }; boolean b;
 retry: while (true) {
 pred = head; curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) { … }
 if ((curr.key == key && curr.object == object) 

 || curr.key > key)

 return new Window(pred, curr);
 pred = curr; curr = succ;
 }
 }

}

Get successor and mark

Concurrency: Foundations and Algorithms —

Lock-Free Find

93

public Window find(Node head, T object) {
 Node pred, curr, succ; int key = object.hashCode();
 boolean[] marked = { false }; boolean b;
 retry: while (true) {
 pred = head; curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) { … }
 if ((curr.key == key && curr.object == object) 

 || curr.key > key)

 return new Window(pred, curr);
 pred = curr; curr = succ;
 }
 }

}

Try to remove deleted nodes

Concurrency: Foundations and Algorithms —

Lock-Free Find

93

public Window find(Node head, T object) {
 Node pred, curr, succ; int key = object.hashCode();
 boolean[] marked = { false }; boolean b;
 retry: while (true) {
 pred = head; curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) { … }
 if ((curr.key == key && curr.object == object) 

 || curr.key > key)

 return new Window(pred, curr);
 pred = curr; curr = succ;
 }
 }

}

If found object or
greater key, return
pred and curr

Concurrency: Foundations and Algorithms —

Lock-Free Find

93

public Window find(Node head, T object) {
 Node pred, curr, succ; int key = object.hashCode();
 boolean[] marked = { false }; boolean b;
 retry: while (true) {
 pred = head; curr = pred.next.getReference();
 while (true) {
 succ = curr.next.get(marked);
 while (marked[0]) { … }
 if ((curr.key == key && curr.object == object) 

 || curr.key > key)

 return new Window(pred, curr);
 pred = curr; curr = succ;
 }
 }

}

Otherwise advance window
and loop again

Concurrency: Foundations and Algorithms —

Lock-Free Find

94

…
while (marked[0]) {
 b = pred.next.compareAndSet(curr, succ, false, false);
 if (!b) continue retry;
 curr = succ;
 succ = curr.next.get(marked);
}
…

Concurrency: Foundations and Algorithms —

Lock-Free Find

94

…
while (marked[0]) {
 b = pred.next.compareAndSet(curr, succ, false, false);
 if (!b) continue retry;
 curr = succ;
 succ = curr.next.get(marked);
}
…

Try to snip out node

Concurrency: Foundations and Algorithms —

Lock-Free Find

94

…
while (marked[0]) {
 b = pred.next.compareAndSet(curr, succ, false, false);
 if (!b) continue retry;
 curr = succ;
 succ = curr.next.get(marked);
}
…

If predecessor’s next field changed
must retry whole traversal

Concurrency: Foundations and Algorithms —

Lock-Free Find

94

…
while (marked[0]) {
 b = pred.next.compareAndSet(curr, succ, false, false);
 if (!b) continue retry;
 curr = succ;
 succ = curr.next.get(marked);
}
…

Otherwise move on to check if
next node deleted

Concurrency: Foundations and Algorithms —

Summary: Lock-Free List

➤ AtomicMarkableReference atomically updates mark and
reference

➤ Prevents manipulation of logically-removed next pointer

➤ Lock-free add() and remove()

➤ Remove performs logical removal, may leave node

➤ Lock-free find() traverses both marked and removed nodes

➤ Physically clean up (remove) marked nodes

95

Concurrency: Foundations and Algorithms —

Performance

96

Coarse grained

O
ps

/s

Threads

Lock-free list
Lazy list

Fine grained

Optimistic list

© Herlihy-Shavit

Performance

On 16 node shared memory machine
Benchmark throughput of Java List-based Set
algs. Vary % of Contains() method Calls.

97

High Contains Ratio

© Herlihy-Shavit

Lock-free
Lazy list

Course Grained
Fine Lock-coupling

Ops/sec (90% reads/ 10% updates)

98

© Herlihy-Shavit

Low Contains Ratio

Lock-free

Lazy list

Course Grained
Fine Lock-coupling

Ops/sec (50% reads/ 50% updates)

99

© Herlihy-Shavit

As Contains Ratio Increases

Lock-free

Lazy list

Course Grained
Fine Lock-coupling

% Contains()

100

Concurrency: Foundations and Algorithms —

Summary

➤ Four “generic” approaches to concurrent data
structure design

➤ Fine-grained locking

➤ Optimistic synchronization

➤ Lazy synchronization

➤ Lock-free synchronization

101

Concurrency: Foundations and Algorithms —

“To Lock or Not to Lock”

➤ Locking vs. non-blocking

➤ Extremist views on both sides

➤ Nobler to compromise, combine locking and non-
blocking

➤ Example: Lazy list combines blocking add() and
remove() and a wait-free contains()

➤ Blocking/non-blocking is a property of a method

102

