- LINKED LISTS: LOCKING, LOCK-FREE, AND BEYOND -

Prof. Christof Fetzer
TU rsde

(i Al
Y ";‘ :

Today: Concurrent Objects

> Adding threads...

» Should not lower throughput
> Contention effects 6 Q
> Mostly fixed by queue locks

> Overhead to acquire the lock:

> we look at futex a later lecture and briefly discuss queue locks.
» Should increase throughput
> Not possible if inherently sequential

> Surprising things are parallelizable

Concurrency: Foundations and Algorithms —

Today: Concurrent Objects
> Adding threads...
» Should not lower throughput
> Contention effects 6 Q
> Mostly fixed by queue locks

> Overhead to acquire the lock:

> we look at futex a later lecture and briefly discuss queue locks.
» Should increase throughput
> Not possible if inherently sequential

> Surprising things are parallelizable

Concurrency: Foundations and Algorithms —

Today: Concurrent Objects
> Adding threads...
» Should not lower throughput
> Contention effects 6 Q
> Mostly fixed by queue locks

> Overhead to acquire the lock:

> we look at futex a later lecture and briefly discuss queue locks.
» Should increase throughput
> Not possible if inherently sequential

> Surprising things are parallelizable

Concurrency: Foundations and Algorithms —

Today: Concurrent Objects
> Adding threads...
» Should not lower throughput
> Contention effects 6 Q
> Mostly fixed by queue locks

> Overhead to acquire the lock:

> we look at futex a later lecture and briefly discuss queue locks.
» Should increase throughput
> Not possible if inherently sequential

> Surprising things are parallelizable

Concurrency: Foundations and Algorithms —

Today: Concurrent Objects
> Adding threads...
¢
» Should not lower throughput W
> Contention effects 6 Q
> Mostly fixed by queue locks

> Overhead to acquire the lock:

> we look at futex a later lecture and briefly discuss queue locks.
» Should increase throughput
> Not possible if inherently sequential

> Surprising things are parallelizable

Concurrency: Foundations and Algorithms —

Today: Concurrent Objects
> Adding threads...
¢
> Should not lower throughput Q

> we look at futex a later lecture and briefly discuss queue locks.

> Contention effects
> Mostly fixed by queue locks

> Overhead to acquire the lock:

» Should increase throughput
> Not possible if inherently sequential

> Surprising things are parallelizable

Concurrency: Foundations and Algorithms —

Today: Concurrent Objects
> Adding threads...
¢
» Should not lower throughput W
> Contention effects 6 Q
> Mostly fixed by queue locks

> Overhead to acquire the lock:

> we look at futex a later lecture and briefly discuss queue locks.
» Should increase throughput
> Not possible if inherently sequential

> Surprising things are parallelizable

Concurrency: Foundations and Algorithms —

Coarse-Grained Synchronization

» Each method locks the object
> Avoid contention using queue locks
> Easy to reason about
> In simple cases
» Standard Java model
» Synchronized blocks and methods

> So, are we done?

Concurrency: Foundations and Algorithms —

Coarse-Grained Synchronization

> Sequential bottleneck

> All threads “stand in line”
» Adding more threads

> Does not improve throughput

» Struggle to keep it from getting worse
> So why even use a multiprocessor?

> Well, some applications inherently parallel...

Concurrency: Foundations and Algorithms —

This Lecture

» Introduce four “patterns”

> Bag of tricks

> Methods that work more than once
> For highly-concurrent objects
> Goal

» Concurrent access

> More threads, more throughput

Concurrency: Foundations and Algorithms —

1. Fine-Grained Synchronization

» Instead of using a single lock...

> Split object into independently-synchronized
components

» Methods conflict when they access
» The same component...

» At the same time

Concurrency: Foundations and Algorithms —

2. Optimistic Synchronization

> Object = linked set of components
» Search without locking...
> If you find it, lock and check...
» OK, we are done
> QOops, try again
» Evaluation
» Cheaper than locking

> Mistakes are expensive

Concurrency: Foundations and Algorithms —

J. Lazy Synchronization

» Postpone hard work
» Removing components is tricky
» Logical removal
» Mark component to be deleted
» Physical removal

» Do what needs to be done

Concurrency: Foundations and Algorithms —

4. Lock-Free Synchronization

» Do not use locks at all

» Use compareAndSet() and relatives...
» Advantages

> Robust against asynchrony
» Disadvantages

> Complex

» Sometimes high overhead

Concurrency: Foundations and Algorithms —

Wait-Free Implementations

Definition: An object implementation is
wait-free if every thread completes a method in
a finite number of steps

No mutual exclusion
» Thread could halt in critical section

© Herlihy and Shavit

10

Lock-Free Implementations

Definition: An object implementation is lock-
free if in an infinite execution infinitely often
some method call finishes (obviously, in a finite
number of steps)

No difference between lock-free and wait-
free for finite executions

© Herlihy and Shavit

11

Example: Set
Properties

» Collection of objects
» No duplicates
» Methods
» add() a new object
> remove() an object

> Test if set contains() object

Concurrency: Foundations and Algorithms —

12

Set Interface

public interface Set {
public boolean add(Obiject x);
public boolean remove(Obiject x);
public boolean contains(Object x);

}

Set Interface

public interface Set {

[public boolean add(Obiject x);
public boolean remove(Obiject x);
public boolean contains(Object x);

}

? Add object to set

Set Interface

public interface Set {
public boolean add(Obiject x);

[public boolean remove(Obiject x);
public boolean contains(Object x);

}

? Remove object
from set

Set Interface

public interface Set {
public boolean add(Obiject x);
public boolean remove(Object x);
[public boolean contains(Object x);
} Is object in set?

Linked List

> [llustrate these patterns...
» Using a list-based Set
» Common data structure

» Building block for other apps

Concurrency: Foundations and Algorithms —

14

List Node

public class Node {
Object object;
int key;
Node next;

}

public class Node {

| Object object;

g

int key;
Node next;

}

List Node

Object of interest

Concurrency: Foundations and Algorithms —

15

List Node

public class Node {
Object object;

[int key; ? Usually hash code
Node next;

}

Concurrency: Foundations and Algorithms —

15

public class Node {
Object object;
int key;
[Node next; F
}

List Node

Reference to next node

Concurrency: Foundations and Algorithms —

15

The List-Based Set

B[+ F—{[+—EE

The List-Based Set

lal +—1b| 51|

Ordered + sentinel nodes
(min & max possible keys)

Concurrency: Foundations and Algorithms — 16

Reasoning about
Concurrent Data Structures

> I[dentify invariants
> Properties that always holds
> True when object is created
> Truth preserved by each method
> add(), remove(), contains()
» Each step of each method
> Most steps are trivial
> Usually one step tricky

> Often linearization point

Concurrency: Foundations and Algorithms —

17

Interference
» Proof that invariants are preserved works if methods
considered are the only modifiers
» Language encapsulation helps
> List nodes not visible outside class
» Freedom from interference needed even for removed nodes
» Some algorithms traverse removed nodes
» Careful with malloc() and free()!

> Garbage-collection helps here

Concurrency: Foundations and Algorithms — 18

Blame Game

> Suppose
> add() leaves behind 2 copies of x
> remove() removes only 1
» Which one is incorrect?
» If invariant says no duplicates
> add() is incorrect
> Otherwise

> remove() is incorrect

Concurrency: Foundations and Algorithms —

19

Set Invariant (Partly)

» Sentinel nodes
» Tail reachable from head
» Sorted

» No duplicates

Concurrency: Foundations and Algorithms —

20

Sequential List Based Set

B G

Sequential List Based Set

B G

5

Sequential List Based Set

add(b)

B (o< ({3 — -

o

Sequential List Based Set

add(b)

B (o< ({3 — -

‘ b ‘ - |
remove(b

BRI G

Sequential List Based Set

add(b)

B (o< ({3 — -

o

remove

e e

Coarse-Grained Locking

o
B[+—{T

Coarse-Grained Locking

B[+—{ [+ 3—EE

Coarse-Grained Locking

B[+—{ [+ 3—EE

Coarse-Grained Locking

B — (< ({3 — -
b

ﬁ7(

Coarse-Grained Locking

B — (o< ({3 — -
b

ﬁ7(

Coarse-Grained Locking

il
¢ ™

B — (o< ({3 — -
b

ﬁ7(

Simple but hotspot + bottleneck

1. Coarse-Grained Locking

> Easy, same as synchronized methods
> “One lock to rule them all...”

> Simple, clearly correct
> Deserves respect!

» Works poorly with contention
> Queue locks help

> But bottleneck still an issue

Concurrency: Foundations and Algorithms —

23

2. Fine-grained Locking

» Requires careful thought

> “Do not meddle in the affairs of wizards, for they
are subtle and quick to anger”

> Split object into pieces
» Each piece has own lock

» Methods that work on disjoint pieces need not
exclude each other

Concurrency: Foundations and Algorithms —

24

Hand-over-Hand Locking

B[+—{c[+—{ T J—E

T

Hand-over-Hand Locking

ES—{=[+—{c[F—{ [F+—EF

T

Hand-over-Hand Locking

ERS—{= 33— F—{ [+—Ea

T

Hand-over-Hand Locking

B[—{c[+—{[J—E

T

Hand-over-Hand Locking

B[—{c[F—{ [3—EE

T

Hand-over-Hand Locking

ERE—{e[F—{o[F—{ [F+—EF

T

Hand-over-Hand Locking

B33

T

Hand-over-Hand Locking

B[e[F+—{[F—E

Removing a Node

B[+—{c[+—{ T J—E

T

Removing a Node

B[+—{c[+—{ T J—E

T

Removing a Node

ES—{=[+—{c[F—{ [F+—EF

T

Removing a Node

ERS—{= 33— F—{ [+—Ea

T

Removing a Node

B[—{c[+—{[J—E

T

Removing a Node

G 33—

T

Removing a Node

Bl [

T

Removing a Node

= e = - N

T

Removing a Node

B[+—{c[+—{ T J—E

@ '& remove(c)

Removing a Node

la| F—{b[F+—{c [F+—EHF

@ '& remove(c)

Removing a Node

[b] —{c] +—EFn

a |

@ '& remove(c)

Removing a Node

B J—{c+—{T3—E

@ '& remove(c)

Removing a Node

L[+—EEH

'& remove(c)

Removing a Node

B[+ F—{- [+

@ '& remove(c)

Removing a Node

BB G e,

@ '& remove(c)

Removing a Node

BB G —Emn

@ '& remove(c)

Removing a Node

B 4l F—{- [+

@ '& remove(c)

Removing a Node

e G G o

Z

@ '& remove(c)

Removing a Node

BE—1J [k [[[d—Ea

@ '& remove(c)

Removing a Node

Uh, oh!
Still in list

BEEG. [[—Em

@ '& remove(c)

Problem

» To delete node b

» Swing node a’s next field to ¢

lal 5 bl g—fc] |

» Problem 1is

» Someone could delete ¢ concurrently

EE B [

Concurrency: Foundations and Algorithms —

28

Insight

> If a node is locked

» No one can delete node’s successor
> If a thread locks

» The node to be deleted

» And its predecessor

» Then it works

Concurrency: Foundations and Algorithms —

29

Hand-over-Hand Again

B[+—{c[+—{ T J—E

T

Hand-over-Hand Again

B[+—{c[+—{ T J—E

T

Hand-over-Hand Again

ES—{=[+—{c[F—{ [F+—EF

T

Hand-over-Hand Again

ERS—{= 33— F—{ [+—Ea

T

Hand-over-Hand Again

B[—{c[+—{[J—E

T

Hand-over-Hand Again

B[—{c[F—{3—E

T

Hand-over-Hand Again

Bl —{-[J I3 T3

T

Hand-over-Hand Again

= e = - N

T

Hand-over-Hand Again

B[+—{c[+—{ T J—E

@ '& remove(c)

Hand-over-Hand Again

la| F—{b[F+—{c [F+—EHF

@ '& remove(c)

Hand-over-Hand Again

[b] —{c] +—EFn

a |

@ '& remove(c)

Hand-over-Hand Again

B J—{c+—{T3—E

@ '& remove(c)

Hand-over-Hand Again

B J—{c [+—{J—E

@ '& remove(c)

Hand-over-Hand Again

L[+—EEH

'& remove(c)

Hand-over-Hand Again

BB G e,

@ '& remove(c)

Hand-over-Hand Again

BB G —Emn

@ '& remove(c)

Hand-over-Hand Again

- S

c |

re m OVG

Hand-over-Hand Again

Bl

c |

re m OVG

Hand-over-Hand Again

Bl

Lc |

re m OVG

Hand-over-Hand Again

- e R S T S R = - o

@ '& remove(c)

Hand-over-Hand Again

Bl —{-13—{1Jd B

@ '& remove(c)

Hand-over-Hand Again

BB

—

@ '& remove(c)

Hand-over-Hand Again

=R R -

@ '& remove(c)

Remove

public boolean remove(Object object) {
int key = object.hashCode();
Node pred, curr;

try {

} finally {
curr.unlock();
pred.unlock();

}
}

Remove

public boolean remove(Object object) {
[int key = object.hashCode(); ™ Key used to order node
Node pred, curr;

try {

} finally {
curr.unlock();
pred.unlock();

}
}

Remove

public boolean remove(Object object) {
int key = object.hashCode();

[Node pred, curr; r Predecessor and current nodes
try {

} finally {
curr.unlock();
pred.unlock();

}
}

Remove

public boolean remove(Object object) {
int key = object.hashCode();
Node pred, curr;

try {
} finally {
curr.unlock();
[pred.unlock(); ?
¥
Y

Make sure locks released

Remove

public boolean remove(Object object) {
int key = object.hashCode();
Node pred, curr;

tr
| o ? Everything else

} finally {
curr.unlock();

pred.unlock();

}
}

Remove

try {
pred = this.head;

pred.lock();
curr = pred.next;
curr.lock();

}finally { ...

try {

Remove

pred = this.head;
pred.lock();

} Lock previous

curr = pred.next;
curr.lock();

};‘i.r.lally{ L)

Concurrency: Foundations and Algorithms —

33

try {
pred = this.head;

pred.lock();

Remove

curr = pred.next;
curr.lock();

T Lock current

};‘i.r.lally{ L)

Concurrency: Foundations and Algorithms —

33

Remove

try {
pred = this.head;

pred.lock();
curr = pred.next;
curr.lock();

[... L Traverse the list

Yinally { ... }

Remove: Searching

while (curr.key <= key) {

if (object == curr.object) {
pred.next = curr.next;
return true;

¥

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;

Remove: Searching

| while (curr.key <= key) {

g

if (object == curr.object) {
pred.next = curr.next;
return true;

¥

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

return false;

Search key range (curr and
pred locked)

Remove: Searching

while (curr.key <= key) {

if (object == curr.object) {
pred.next = curr.next; If node found,
return true; remove it

~

\J
pred.unlock();

pred = curr;
curr = curr.next;
curr.lock();

}

return false;

Remove: Searching

while (curr.key <= key) {
if (object == curr.object) {
pred.next = curr.next;
return true;

}
pred.unlock(); Unlock predecessor and demote current
pred = curr; (only one node locked!)
curr = curr.next;
curr.lock();
}

return false;

Remove: Searching

while (curr.key <= key) {
if (object == curr.object) {
pred.next = curr.next;
return true;
¥
pred.unlock();
pred = curr;
[curr = curr.next; L
curr.lock(); Find and lock new current
Y

return false;

Remove: Searching

while (curr.key <= key) {

if (object == curr.object) {
pred.next = curr.next;
return true;

¥

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

[return false; } Otherwise not present

Adding Nodes

> To add node b
» Lock predecessor
> Lock successor

> Neither can be deleted

Concurrency: Foundations and Algorithms —

35

Drawbacks

> Better than coarse-grained lock
» Threads can traverse in parallel
» Still not ideal
» Long chain of acquire/release
» Threads cannot overtake one another

» Inefficient

Concurrency: Foundations and Algorithms —

36

Linked List Lecture

> Five approaches to concurrent data structure design:
» Coarse-grained locking
> Fine-grained locking
» Optimistic synchronization
» Lazy synchronization

» Lock-free synchronization

© Herlihy-Shavit

List-based Set

» We used an ordered list to implement a Set:
» An unordered collection of objects
» No duplicates
» Methods:
» add() a new object
> remove() an object

> Test if set contains() object

© Herlihy-Shavit

38

Course Grained Locking

<l -

—

Simple but hotspot + bottleneck

© Herlihy-Shavit

39

-d

C

Fine Grained Locking

F—>(a] +—>(b

6 6 6

—(d

n

» Allows concurrency but everyone always
delayed by front guy = bottleneck

» Lock acquisition overhead

Optimistic List

& 66 .8 6
(I3 Gl 3— (b] s ([3—> (e[

» Limited Hotspots (Only at locked
Add(), Remove(), Contains()
destination locations, not traversals)

> But two traversals

» Yet traversals are wait-free!

© Herlihy-Shavit

Lazy List

/\/\/\ %l&
6 6 6 6 b
CL I 5=>(ald 5>{b[0 5=>{d[1] 5|] }

Lazy Add() and Remove() + Wait-free Contains ()

SN

Lock-free List

Ll 9=>(a

0O ==p{b

%‘f/@ c[1 5=»{ecl0]

» Add() and Remove() physically remove marked

nodes

» Wait-free contains() traverses both marked and
removed nodes

© Herlihy-Shavit

J. Optimistic Synchronization

» Find nodes without locking
» Lock nodes

» Check that everything is OK

Concurrency: Foundations and Algorithms —

44

What Could Go Wrong?

B[+—{c[+—{ T J—E

@ '& remove(c)

What Could Go Wrong?

la| F—{b[F+—{c [F+—EHF

@ '& remove(c)

What Could Go Wrong?

[b] —{c] +—EFn

a |

@ '& remove(c)

What Could Go Wrong?

B J—{c+—{T3—E

@ '& remove(c)

What Could Go Wrong?

L[+—EEH

@ '& remove(c)

What Could Go Wrong?

}%I—I—Mﬁhl-l—’_—ll'

@ '& remove(c)

What Could Go Wrong?

B[4+

@ '& remove(c)

What Could Go Wrong?

Bl —{-[34—l

@ '& remove(c)

What Could Go Wrong?

c |

Bl G130

@ '& remove(c)

What Could Go Wrong?

c |

EIE—{[3]

@ '& remove(c)

What Could Go Wrong?

B[—{c[([J—E

@ '& remove(c)

What Could Go Wrong?

B[—{c[([J—E

@ '& remove(c)

What Could Go Wrong?

= e ANOE B

@ '& remove(c)

What Could Go Wrong?

Bl —{-1J [l [3—Ems

@ '& remove(c)

What Could Go Wrong?

Bl —{-1J [l [3—Ems

@ '& remove(c)

What Could Go Wrong?

BEE [

ncy: Foundations and Algorithms

45

What Could Go Wrong?

BE—1J [k [[[d—Ea

@ '& remove(c)

What Could Go Wrong?

Uh, oh!
Still in list

BE—1J [k [[[d—Ea

@ '& remove(c)

What Could Go Wrong?

Check that
node still

accessible

2T TN
Ssen-” T 4

om0 [

=

'& remove(c)

Concurrency: Foundations and Algorithms —

46

What Could Go Wrong?

B[+—{ [+ 3—EE

@ '& remove(c)

What Could Go Wrong?

la| F—{c[F+—{d[+—EHF

@ '& remove(c)

What Could Go Wrong?

L[F—{d] +— T

a |

@ '& remove(c)

What Could Go Wrong?

B J—{ [+ 3—E

@ '& remove(c)

What Could Go Wrong?

Ld] +—EEH

@ '& remove(c)

What Could Go Wrong?

Ld] +—EEH

@ '& remove(c)

What Could Go Wrong?

BElE—- Ij—M {d] —EE

@ '& remove(c)

What Could Go Wrong?

El—1- |:}—u {d [+—E=

@ '& remove(c)

What Could Go Wrong?

B[—{ [3—[T 3—E

@ '& remove(c)

What Could Go Wrong?

B[—{ [3—[T 3—E

@ '& remove(c)

What Could Go Wrong?

G0 (3G

@ '& remove(c)

What Could Go Wrong?

o

Ld] +—EEH

@ '& remove(c)

What Could Go Wrong?

O
@ '& remove(c)

What Could Go Wrong?

M

m:j d [+—EF

@ '& remove(c)

What Could Go Wrong?

M

Bl [[T3—{3—Ems

@ '& remove(c)

What Could Go Wrong?

Uh, oh!
Not in list
M

Bl [[T3—{3—Ems

@ '& remove(c)

What Could Go Wrong?

Check that
nodes still
adjacent

Ld] +—EEH

'& remove(c)

Concurrency: Foundations and Algorithms — 48

Optimistic Fine Grained

5 5 5 5 5
B[—{[F+—{[3—Ea

> To remove C
> Optimistically traverse list to find ¢
» Lock c.pred then lock c.curr
> Re-Traverse list to find ¢ and verify that c.pred precedes c.curr

» Perform removal and release locks

Concurrency: Foundations and Algorithms — 49

Optimistic Fine Grained

6 8 o 6 6
Bl — +—0[+—{ [+—E

> To remove C
> Optimistically traverse list to find ¢
» Lock c.pred then lock c.curr
> Re-Traverse list to find ¢ and verify that c.pred precedes c.curr

» Perform removal and release locks

Concurrency: Foundations and Algorithms — 49

Optimistic Fine Grained

1/\/\—72 2

6 6 0
BEE— G —0F+—{] +—EF

> To remove C
> Optimistically traverse list to find ¢
» Lock c.pred then lock c.curr
> Re-Traverse list to find ¢ and verify that c.pred precedes c.curr

» Perform removal and release locks

Concurrency: Foundations and Algorithms — 49

Optimistic Fine Grained

- ~ -
- ~ -_” S =V

/\/\—V 2 2

6 6 - 6
ES—{a[+—{c[F+—{ [+—EH

- W
\
/

> To remove C
> Optimistically traverse list to find ¢
» Lock c.pred then lock c.curr
> Re-Traverse list to find ¢ and verify that c.pred precedes c.curr

» Perform removal and release locks

Concurrency: Foundations and Algorithms — 49

Optimistic Fine Grained

- ~ -
- ~ -_” S =V

/\/\—V 2 2

6 6) -~ (0] 6
Bl —{a[] 3o [F—Ea

- W
\
/

> To remove C
> Optimistically traverse list to find ¢
» Lock c.pred then lock c.curr
> Re-Traverse list to find ¢ and verify that c.pred precedes c.curr

» Perform removal and release locks

Concurrency: Foundations and Algorithms — 49

Correctness

> If
» Nodes b and ¢ both locked
» Node b still accessible
> Node c still successor to b
> Then
> Neither has been deleted

» OK to delete c and return true

Concurrency: Foundations and Algorithms —

50

Removing an Absent Node

B[+—{ [+ 3—EE

'& remove(b)

Removing an Absent Node

la| F—{c[F+—{d[+—EHF

'& remove(b)

Concurrency: Foundations and Algorithms — 51

Removing an Absent Node

L[F—{d] +— T

a |

'& remove(b)

Concurrency: Foundations and Algorithms — 51

Removing an Absent Node

B J—{ [+ 3—E

'& remove(b)

Concurrency: Foundations and Algorithms — 51

Removing an Absent Node

Ld] +—EEH

'& remove(b)

Concurrency: Foundations and Algorithms — 51

Removing an Absent Node

Ld] +—EEH

'& remove(b)

Concurrency: Foundations and Algorithms — 51

Removing an Absent Node

Check that
node still

accessible

-—
AS SN

Ld] +—EEH

'& remove(b)

Concurrency: Foundations and Algorithms — 51

Removing an Absent Node

Check that
nodes still
adjacent

Ld] +—EEH

'& remove(b)

Concurrency: Foundations and Algorithms — 51

Removing an Absent Node

Ld] +—EEH

@rn false]
'& remove(b)

Concurrency: Foundations and Algorithms — 51

Removing an Absent Node

B[+—{ [+ 3—EE

@rn false]
'& remove(b)

Concurrency: Foundations and Algorithms — 51

Correctness

> If
» Nodes a and ¢ both locked
> Node a still accessible
> Node c still successor to a
> Then
> Neither has been deleted
> No thread can add b after a while a is locked

» OK to return false

Concurrency: Foundations and Algorithms — 52

Validation

private boolean
validate(Node pred,
Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;

}

return false;

}

Validation

private boolean
validate(Node pred, Predecessor & current nodes
[Node curr) { ?
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;

}

return false;

Validation

private boolean
validate(Node pred,
Node curr) {
INode node = head; L
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;

}

return false;

}

Start at the beginning

Validation

private boolean
validate(Node pred,
Node curr) {
Node node = head;
[while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;

}

return false;

}

; Search range of keys

Validation

private boolean

validate(Node pred,

Node curr) {

Node node = head;

while (node.key <= pred.key) {

| if (node == pred) L. Predecessor reachable?

return pred.next == curr;
node = node.next;

}

return false;

}

Validation

private boolean
validate(Node pred,
Node curr) {

Node node = head;

while (node.key <= pred.key) {
if (node == pred)

| return pred.next == curr;
node = node.next;

}

return false;

}

Current node next?

Validation

private boolean
validate(Node pred,
Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)

return pred.next == curr;

[node = node.next;

}

return false;

}

L Otherwise move on

Validation

private boolean
validate(Node pred,
Node curr) {
Node node = head;
while (node.key <= pred.key) {
if (node == pred)
return pred.next == curr;
node = node.next;

}

| return false; L Predecessor not reachable

}

Remove: Searching

public boolean remove(Object object) {
int key = object.hashCode();
while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (object == curr.object)
break;
pred = curr;
curr = curr.next;

}

Remove: Searching

public boolean remove(Object object) {
Lint key = object.hashCode(); ™ Search key
while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (object == curr.object)
break;
pred = curr;
curr = curr.next;

}

Remove: Searching

public boolean remove(Object object) {

int key = object.nashCode();
[while (true) { F Retry on synchronization conflict

Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (object == curr.object)
break;
pred = curr;
curr = curr.next;

}

Remove: Searching

public boolean remove(Object object) {
int key = object.hashCode();
while (true) { .
[Node pred = this.head: } Examine predecessor and
current nodes
Node curr = pred.next;
while (curr.key <= key) {
if (object == curr.object)
break;
pred = curr;
curr = curr.next;

}

Remove: Searching

public boolean remove(Object object) {
int key = object.hashCode();
while (true) {
Node pred = this.head;
Node curr = pred.next:
[while (curr.key <= key) { =
if (object == curr.object)
break;
pred = curr;
curr = curr.next;

}

Search by key

Remove: Searching

public boolean remove(Object object) {
int key = object.hashCode();
while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
[if (object == curr.object) } Stop if we find object
break;
pred = curr;
curr = curr.next;

}

Remove: Searching

public boolean remove(Object object) {
int key = object.hashCode();
while (true) {
Node pred = this.head;
Node curr = pred.next;
while (curr.key <= key) {
if (object == curr.object)

____break:
pred = curr,; } Move along
curr = curr.next;

}

On Exit from Loop

> If object is present
> curr holds object
> pred just before curr
> If object is absent
> curr has first higher key
> pred just before curr

» Assuming no synchronization problems

Concurrency: Foundations and Algorithms —

55

Remove

try {
pred.lock(); curr.lock();

if (validate(pred, curr)) {
if (curr.object == object) {
pred.next = curr.next;
return true;
} else
return false;

}

\finally {
pred.unlock(); curr.unlock();

Remove

try {
pred.lock(); curr.lock();

if (validate(pred, curr)) {
if (curr.object == object) {
pred.next = curr.next;
return true;
} else
return false;

}

\finally {
| pred.unlock(); curr.unlock(); r

-

Always unlock

Remove

try { Lock both nodes

| pred.lock(); curr.lock(); 1
if (validate(pred, curr)) {
if (curr.object == object) {
pred.next = curr.next;
return true;
} else
return false;

}

\finally {
pred.unlock(); curr.unlock();

Remove

try {
pred.lock(); curr.lock(); Check for synchronization
[if (validate(pred, curr)) { [~ conflicts

if (curr.object == object) {
pred.next = curr.next;
return true;

} else
return false;

}

\finally {
pred.unlock(); curr.unlock();

Remove

try {
pred.lock(); curr.lock();

if (validate(pred, curr)) {
Cif (curr.object == object) {
pred.next = curr.next;
. return true;
} else
return false;

}

\finally {
pred.unlock(); curr.unlock();

Object found,
remove node

Remove

try {
pred.lock(); curr.lock();

if (validate(pred, curr)) {
if (curr.object == object) {
pred.next = curr.next;
return true;
} else Object not found
[return false; P
Y

\finally {
pred.unlock(); curr.unlock();

Summary: Optimistic List

> Wait-free traversal
> May traverse removed nodes

» Must have non-interference (natural in languages with GC like
Java)

» Limited hotspots

> Only at locked add(), remove(), contains() destination locations,
not traversals

» But two traversals

> Yet traversals are wait-free

Concurrency: Foundations and Algorithms —

57

So Far, So Good

» Much less lock acquisition/release

> Performance

> Concurrency
> Problems

> Need to traverse list twice

> contains() acquires locks

> Most common method call (90% in many applications)

» Optimistic works if

> Cost of scanning twice without locks <
cost of scanning once with locks

Concurrency: Foundations and Algorithms —

58

Lazy List

» Like optimistic, except
» Scan once
» contains() never locks
» Key insight
» Removing nodes causes trouble

> Do it “lazily”

Concurrency: Foundations and Algorithms —

59

Lazy List

» Remove Method
> Scans list (as before)
> Locks predecessor & current (as before)
> Logical delete
> Marks current node as removed (new!)
» Use additional mark bit in node
> Physical delete

> Redirects predecessor’s next (as before)

Concurrency: Foundations and Algorithms —

60

Lazy Removal

o o o o o
EE— 2 [o] +—{b Jo[—{ c [o] +—{EHIEH!
[Mark bit (1 if node dele?m

> To remove C

> Optimistically traverse list to find ¢

> Lock c.pred then lock c.curr

> Verify marks and that c.pred precedes c.curr
> Set mark bit (logical removal)

> Perform physical removal and release locks

Concurrency: Foundations and Algorithms — 61

Lazy Removal

1~ N~

o o o o o
EE— 2 [o] +—{b Jo[—{ c [o] +—{EHIEH!
[Mark bit (1 if node dele?m

> To remove C

> Optimistically traverse list to find ¢

> Lock c.pred then lock c.curr

> Verify marks and that c.pred precedes c.curr
> Set mark bit (logical removal)

> Perform physical removal and release locks

Concurrency: Foundations and Algorithms — 61

Lazy Removal

1/\/\—72 2

6 6 6
EE— 2 [o] +—{ b Jo[+—{ c Jo] +—{EHIEH"
[Mark bit (1 if node dele:m

> To remove C

> Optimistically traverse list to find ¢

> Lock c.pred then lock c.curr

> Verify marks and that c.pred precedes c.curr
> Set mark bit (logical removal)

> Perform physical removal and release locks

Concurrency: Foundations and Algorithms — 61

Lazy Removal

1/\/\—72 2

6 6 - 6
EE— 2 [o] +—{b Jo[—{ c [o] +—{EHIEH!
[Mark bit (1 if node dele:m

> To remove C

> Optimistically traverse list to find ¢

> Lock c.pred then lock c.curr

> Verify marks and that c.pred precedes c.curr
> Set mark bit (logical removal)

> Perform physical removal and release locks

Concurrency: Foundations and Algorithms — 61

Lazy Removal

S o i 24—4 o3 T3
| Mark bit (1 if node deleted)

> To remove C

> Optimistically traverse list to find ¢

> Lock c.pred then lock c.curr

> Verify marks and that c.pred precedes c.curr
> Set mark bit (logical removal)

> Perform physical removal and release locks

Concurrency: Foundations and Algorithms — 61

Lazy Removal

ETE 7&4—4 |o|4ee\ |1H—m4|-
[Mark bit (1 if node deleted)

> To remove C

> Optimistically traverse list to find ¢

> Lock c.pred then lock c.curr

> Verify marks and that c.pred precedes c.curr
> Set mark bit (logical removal)

> Perform physical removal and release locks

Concurrency: Foundations and Algorithms — 61

Lazy List

> All Methods
» Scan through locked and marked nodes
» Removing a node does not slow down other method calls...
» Must still lock pred and curr nodes
» Validation
> No need to rescan list!
> Check that pred is not marked
» Check that curr is not marked

> Check that pred points to curr

Concurrency: Foundations and Algorithms —

62

What Could Go Wrong?

B 2 [o] +—{ b [o] +—{ c Jo] +— AR

@ '& remove(c)

What Could Go Wrong?

{a [o] +—{b o] +—{ c [o] +— IR

@ '& remove(c)

What Could Go Wrong?

a |0]

o[b [o[—{ c o] +—{EEIEH

@ '& remove(c)

What Could Go Wrong?

B8 = [o[§—{b [o[F—{<c [o[+—{EIBH!

@ '& remove(c)

What Could Go Wrong?

BB GGl o — s

@ '& remove(c)

What Could Go Wrong?

B — = o[o 3 —{< [l — B

@ '& remove(c)

What Could Go Wrong?

B —{= [o] +—{b [ol Jr—{{ [o[§—{EAIBH!

@ '& remove(c)

What Could Go Wrong?

B — = o[o 3 o[— e

@ '& remove(c)

What Could Go Wrong?

BB 03— o3 o — e

@ '& remove(c)

What Could Go Wrong?

B — = [o] 3o [ol Jr—{{ [o[§—{EIBH!

@ '& remove(c)

What Could Go Wrong?

ELE—{[o[4— bJo[3—{c[o

@ '& remove(c)

What Could Go Wrong?

ELE—{[o[4— bJo[3—{c[o

@ '& remove(c)

What Could Go Wrong?

B =[] 4— b_I1’H— c 10]

@ '& remove(c)

What Could Go Wrong?

0 - A DI E0E = 0 -8

@ '& remove(c)

What Could Go Wrong?

0 - B R CIE N ERE e = 0 - 1]

@ '& remove(c)

What Could Go Wrong?

0 - B R CIE N ERE e = 0 - 1]

@ '& remove(c)

What Could Go Wrong?

Mark bit set:
restart

0 - B R O S ERE R = 0 - 1]

@ '& remove(c)

Concurrency: Foundations and Algorithms — 63

Validation

private boolean
validate(Node pred,
Node curr) {
return
lpred.marked &&
lcurr.marked &&
pred.next == curr;

}

Validation

private boolean
validate(Node pred,
Node curr) {
return Predecessor not logically removed
[Ipred.marked && r
lcurr.marked &&
pred.next == curr;

}

Validation

private boolean
validate(Node pred,
Node curr) {
return
Ipred.marked && Current not logically removed
[lcurr.marked && ™
pred.next == curr;

}

Validation

private boolean
validate(Node pred,
Node curr) {
return
lpred.marked &&
lcurr.marked &&
[pred.next == curr; L

}

Predecessor still points to current

Remove

try {
pred.lock(); curr.lock();

if (validate(pred, curr) {
if (curr.object == object) {
curr.marked = true;
pred.next = curr.next;
return true;
} else return false;

}

\finally {
pred.unlock(); curr.unlock();

Remove

try {
pred.lock(); curr.lock();

| if (validate(pred, curr) {
if (curr.object == object) {
curr.marked = true;
pred.next = curr.next;
return true;
} else return false;

}

\finally {
pred.unlock(); curr.unlock();

(Validate as before

Remove

try {
pred.lock(); curr.lock();

if (validate(pred, curr) {
| if (curr.object == object) { - Object found
curr.marked = true;
pred.next = curr.next;
return true;
} else return false;

}

\finally {
pred.unlock(); curr.unlock();

Remove

try {
pred.lock(); curr.lock();

if (validate(pred, curr) {
if (curr.object == object) {
[curr.marked = true; F Logical removal
pred.next = curr.next;
return true;
} else return false;

}

\finally {
pred.unlock(); curr.unlock();

Remove

try {
pred.lock(); curr.lock();

if (validate(pred, curr) {
if (curr.object == object) {
curr.marked = true;
[pred.next = curr.next; L Physical removal
return true;
} else return false;

}

\finally {
pred.unlock(); curr.unlock();

Contains

public boolean contains(Object object) {
int key = object.hashCode();
Node curr = this.head;
while (curr.key <= key) {
if (object == curr.object)
break;
curr = curr.next;

}

return object == curr.object && !curr.marked;

}

Contains

public boolean contains(Object object) {

int key = object.hashCode();
(Node curr = this.head: [~ Start at the head

while (curr.key <= key) {
if (object == curr.object)
break;
curr = curr.next;

}

return object == curr.object && !curr.marked;

}

Contains

public boolean contains(Object object) {
int key = object.hashCode();
Node curr = this.head;

(while (curr.key <= key) { Egzﬁ]rgse Rltes
if (object == curr.object) (nodes may have
break; been removed)
curr = curr.next;
¥

return object == curr.object && !curr.marked;

Contains

public boolean contains(Object object) {
int key = object.hashCode();
Node curr = this.head;
while (curr.key <= key) {
if (object == curr.object)
break;
curr = curr.next;

}

| return object == curr.object && lcurr.marked;]
—
) Present and undeleted?

Summary: Lazy List

» Wait-free traversal uses mark bit + fact that list is
ordered

» Not marked = in the set

» Marked or missing = not in the set
» Lazy add()
» Lazy remove()

> Wait-free contains()

Concurrency: Foundations and Algorithms —

67

Evaluation

» Good
» contains() does not need to lock
> In fact, it is wait-free!
> Good because it is typically called often
» Uncontended calls do not re-traverse
> Bad
>» Contended calls do re-traverse

> Traffic jam if one thread delays

Concurrency: Foundations and Algorithms —

68

Traffic Jam

» Any concurrent data structure based on mutual
exclusion has a weakness

> If one thread
> Enters critical section
> And “eats the big muffin” (stops running)
> Cache miss, page fault, de-scheduled...

» Everyone else using that lock is stuck!

Concurrency: Foundations and Algorithms —

69

Wait/Lock/Obstruction Freedom

Wait “Al l t h read G lways Guarantees per-thread
freedom ma kes p rogress ”» progress

VS.
Lock “ SO me t h read a lways Guarantees system-
freedom ma kes p rog ress » wide progress
VS

owsrucion ANy thread that runs by itself
freee™ for long enough makes progress”

Concurrency: Foundations and Algorithms

70

Lock-Free Data Structures

» No matter what...
» Some thread will complete method call
> Even if others halt at malicious times
» Weaker than wait-free, yet

» Implies that
» You cannot use locks

» Um, that is why they call it lock-free

Concurrency: Foundations and Algorithms —

71

RMW Atomic Operations

» Read-modify-write operation combines...
» Read from memory
> Modify value
> Write to memory
> ... atomically
» Supported by modern processors
> Atomic increment/decrement, test-and-set, compare-and-set, etc.

> In Java: java.util.concurrent.atomic

Foundation of Concurrent and Distributed Systems

72

public class Atomicinteger {
int value;

public synchronized int

incrementAndGet() {
value = value + 1;
return value;

Y

public synchronized int

decrementAndGet() {
return --value;

}
}

Atomic-Inc/Dec

Atomic-Inc/Dec

| public class Atomicinteger { L
int value;

Package
java.util.concurrent.atomic

public synchronized int

incrementAndGet() {
value = value + 1;
return value;

Y

public synchronized int

decrementAndGet() {
return --value;

}
}

Atomic-Inc/Dec

public class Atomicinteger {
int value;

(
public synchronized int Increment value
incrementAndGet() {

value = value + 1;
_ return value; Y,
Y
public synchronized int
decrementAndGet() {
return --value;

}
}

Atomic-Inc/Dec

public class Atomicinteger {
int value;

public synchronized int

incrementAndGet() {
value = value + 1;
return value;

i
pUinC Synchronized int Decrement value
decrementAndGet() { (pre-decrement

return --value: operator is not
L atomic!)
J

}

Atomic-Inc/Dec

public class Atomicinteger {
int value;

public synchronized int
incrementAndGet() {

value = value + 1; , X86
_ LOCK INC ...
return value; LOCK DEC .
r ¥ LOCK XADD ...
pUinC Synchronized int Decrement value
decrementAndGet() { (pre-decrement

return --value: operator is not
L atomic!)
J

}

Get-and-Set

public class AtomicBoolean {
boolean value;

public synchronized boolean
getAndSet(boolean newValue) {
boolean prior = value;
value = newValue;
return prior;

}
}

Get-and-Set

public class AtomicBoolean {
boolean value;

4 Set new value and
public synchronized boolean return old value

getAndSet(boolean newValue) {
boolean prior = value;
value = newValue;

\ return prior;)
J

Y

Get-and-Set

public class AtomicBoolean {
boolean value;

4 Set new value and
public synchronized boolean return old value

getAndSet(boolean newValue) {
boolean prior = value;
value = newValue;

\ return prior;) - x86

T LOCK XCHG ...

}

Compare-and-Set

public class Atomicinteger {
Int value;

public synchronized boolean
compareAndSet(int expValue,
int newValue) {
if (value == expValue) {
value = newValue;
return true;
Y
return false;
Y
Y

Compare-and-Set

public class Atomicinteger {

| alupj

Set new value and return
_ true if old value matches
pUinC SynChronlzed boolean expected Va[ue, return
compareAndSet(int expValue, false otherwise
int newValue) {
if (value == expValue) {
value = newValue;
return true;

}

Qeturn false; /

}
}

Foundation of Concurrent and Distributed Systems

75

Compare-and-Set

public class Atomicinteger {

| alupj

Set new value and return
_ true if old value matches
pUinC SynChronlzed boolean expected Va[ue, return
compareAndSet(int expValue, false otherwise
int newValue) {
if (value == expValue) {
value = newValue;

return true;
} : X86

LOCK CMPXCHG ...
Qeturn false; /

}
}

Foundation of Concurrent and Distributed Systems

Lock-Free Lists

> Next logical step
» Eliminate locking entirely
» contains() wait-free and add() and remove() lock-free

» Use only compareAndSet() to atomically update links

Concurrency: Foundations and Algorithms —

76

Adding a Node

B[+—{ [+ 3—EE

Adding a Node

1 Ty e ey e W, R)

o

Adding a Node

e My e e W

o

Adding a Node

- EnEdinesaes- ¥

o

Removing a Node

B[+—{c[+—{ T J—E

Removing a Node

L My iy R

EE—-

Removing a Node

T B

Concurrency: Foundations and Algorithms — 78

What Could Go Wrong?

B[+—{c[+—{ T J—E

@ '& remove(c)

What Could Go Wrong?

o My L CO e R

@ '& remove(c)

What Could Go Wrong?

BB TS GrY [T
@ '& remove(c)

What Could Go Wrong?

ot |
BT GL c%;ml-

ncy: Foundations and Algorithms 79

What Could Go Wrong?

> Problem
» Method updates node’s next field after node has been removed
> Solution
» Use AtomicMarkableReference
> Atomically
> Swing reference and update flag
>» Remove in two steps
» Set mark bit in next field

> Redirect predecessor’s pointer

Concurrency: Foundations and Algorithms —

80

Marking a Node

» AtomicMarkableReference class
> In package java.util.concurrent.atomic

» Holds a reference and a mark bit

| address | f]

Concurrency: Foundations and Algorithms —

81

Marking a Node

» AtomicMarkableReference class
> In package java.util.concurrent.atomic

» Holds a reference and a mark bit

l Reference l

| address | f]

Concurrency: Foundations and Algorithms —

81

Marking a Node

» AtomicMarkableReference class
> In package java.util.concurrent.atomic

» Holds a reference and a mark bit

l Reference l wrk bit

address | f]

Concurrency: Foundations and Algorithms —

81

AtomicMarkableReference

public class AtomicMarkableReference <T> {
public T get(boolean[] marked);
public boolean compareAndSet(
T expectedRef,
T updateRef,
boolean expectedMark,
boolean updateMark);
public boolean attemptMark(
T expectedRef,
boolean updateMark);

AtomicMarkahleReference

Data type

public class AtomicMarkableReference @
public T get(boolean[] marked);
public boolean compareAndSet(
T expectedRef,
T updateRef,
boolean expectedMark,
boolean updateMark);
public boolean attemptMark(
T expectedRef,
boolean updateMark);

AtomicMarkahleReference

public class AtomicMarkableReference <T> {

[public T get(boolean[] marked); } Extract reference and
public boolean compareAndSet(mark (at index 0)
T expectedRef,
T updateRef,

boolean expectedMark,

boolean updateMark);
public boolean attemptMark(

T expectedRef,

boolean updateMark);

AtomicMarkahleReference

public class AtomicMarkableReference <T>{
public T get(boolean[] marked);

ublic boolean com areAndSﬁ‘t{his is the current reference...
T expectedRef,

T updateRef,

boolean expectedMark,

boolean updateMark);
public boolean attemptMark(

T expectedRef,

boolean updateMark);

AtomicMarkahleReference

public class AtomicMarkableReference <T> {
public T get(boolean[] marked);

ublic boolean com areAndSﬁ‘t{his is the current reference...
T expectedRef,

T updateRef,
[boolean expectedMark,
boolean updateMark);
public boolean attemptMark(
T expectedRef,
boolean updateMark);

r ...and this is the current mark...

AtomicMarkahleReference

public class AtomicMarkableReference <T>{
public T get(boolean[] marked);
public boolean compareAndSet(

T expectedRef ...then change to this new reference...
T updateRef,

boolean expectedMark,

boolean updateMark);
public boolean attemptMark(

T expectedRef,

boolean updateMark);

AtomicMarkahleReference

public class AtomicMarkableReference <T> {
public T get(boolean[] marked);
public boolean compareAndSet(

T expectedRef ...then change to this new reference...
T updateRef,

boolean expectedMark, ...and this new mark
| boolean updateMark); L
public boolean attemptMark(

T expectedRef,

boolean updateMark);

AtomicMarkahleReference

public class AtomicMarkableReference <T>{
public T get(boolean[] marked);
public boolean compareAndSet(
T expectedRef,
T updateRef,
boolean expectedMark,
boolean updateMark);

public lean attemptMark(
T expectedRef If this is the current reference...

boolean updateMark);

AtomicMarkahleReference

public class AtomicMarkableReference <T>{
public T get(boolean[] marked);
public boolean compareAndSet(
T expectedRef,
T updateRef,
boolean expectedMark,
boolean updateMark);
public boolean attemptMark(
T expectedRef,
[boolean updateMark); F ...then change to this new mark

Removing a Node

B 2 [o] +—{ b [o] +—{ c Jo] +— AR

Removing a Node

EE—{ 2 [o] +—{b [1[+—{ c Jo[+— AR

Removing a Node

BT T e

Removing a Node

2

:Cns

EE—{a 0[5 [o[T4—{c o[+— B

Concurrency: Foundations and Algorithms — 83

What Could Go Wrong?

B 2 [o] +—{ b [o] +—{ c Jo] +— AR

@ '& remove(c)

What Could Go Wrong?

EE—{ 2 [o] +—{b [1[+—{c [1[+—EEH

@ '& remove(c)

What Could Go Wrong?

m+ T B

@ '& remove(c)

What Could Go Wrong?

Fa1led

Mﬂtﬂ‘ﬁ4 T3

@ '& remove(c)

What Could Go Wrong?

50 e e I - o -3

@ '& remove(c)

What Could Go Wrong?

@ '& remove(c)

Traversing the List

» What do you do when you find a “logically” deleted
node in your path?

» Finish the job
» CAS the predecessor’s next field

> Proceed (repeat as needed)

Concurrency: Foundations and Algorithms —

85

Lock-Free Traversal

EE—{ 2 [o] +—{b [1[+—{ c Jo[+— AR

b g

Lock-Free Traversal

{afo[+—{b[1[+—{c Jo] +—EHIEH

b g

Lock-Free Traversal

a |0]

Con

o[b 1] F—{ c [o] +—{EEH

b g

currency: Foundations and Algorithms — 86

Lock-Free Traversal

Bl = [o[§—{bo [[F—{c o[+—{EIEH!

b g

Lock-Free Traversal

B = 0] ibhl [o[+—EBH!

b g

Concurrency: Foundations and Algorithms — 86

Lock-Free Traversal

!Uh,oh!l
EE—=[0] ibhl o c o] +—{EEEH

b g

Concurrency: Foundations and Algorithms — 86

20 - I

Lock-Free Traversal

! Uh, oh! l
(o] [3—{<To[3—

CAS

b g

Concurrency: Foundations and Algorithms — 86

Lock-Free Traversal

ELE—(= 0]

Con

[T —
e

b g

currency: Foundations and Algorithms — 86

Lock-Free Traversal

Concurrency: Foundations and Algorithms — 86

The Window Class

class Window {
Node pred;
Node curr;
Window(Node pred, Node curr) {
this.pred = pred;
this.curr = curr;
Y
¥

The Window Class

class Window
Node pred;
Node curr;
Window(Node pred, Node curr) {
this.pred = pred;
this.curr = curr;
Y
Y

A container for predecessor
and current nodes

Concurrency: Foundations and Algorithms —

87

Using the Find Method

Window window = find(head, object);
Node pred = window.pred;
Node curr = window.curr;

Using the Find Method

[Window window = find(head, object):

? Find window

Node pred = window.pred;
Node curr = window.curr;

Concurrency: Foundations and Algorithms —

88

Using the Find Method

Window window = find(head, object);

|

Node pred = window.pred;
Node curr = window.curr;

} Extract pred
and curr

Concurrency: Foundations and Algorithms —

88

The Find Method

Window window = find(head, b);
Node pred = window.pred;
Node curr = window.curr;

Object in list:

—a[o|T—{b[o[+—1c|O]F—

pred curr succ

Object not in list:

— 1201 Lclo]—

pred curr=succ

Remove

public boolean remove(T object) {

boolean b;

while (true) {
Window window = find(head, object);
Node pred = window.pred, curr = window.curr;
if (curr.object != object)

return false;

Node succ = curr.next.getReference();
b = curr.next.compareAndSet(succ, succ, false, true);
if (Ib) continue;
pred.next.compareAndSet(curr, succ, false, false);
return true;

Remove

public boolean remove(T object) {
boolean b;
[while (true) { r Keep trying
Window window = find(head, object);
Node pred = window.pred, curr = window.curr;
if (curr.object != object)
return false;
Node succ = curr.next.getReference();
b = curr.next.compareAndSet(succ, succ, false, true);
if (Ib) continue;
pred.next.compareAndSet(curr, succ, false, false);
return true;

Remove

public boolean remove(T object) {
boolean b; Find neighbors

while (true) {
Window window = find(head, object); l
' ' (r:

if (curr.object != object)

return false;
Node succ = curr.next.getReference();
b = curr.next.compareAndSet(succ, succ, false, true);
if (Ib) continue;
pred.next.compareAndSet(curr, succ, false, false);
return true;

Remove

public boolean remove(T object) {
boolean b;
while (true) {
Window window = find(head, object);
Node pred = window.pred, curr = window.curr;
. . . Not there
if (curr.object != object)
[return false; T
Node succ = curr.next.getReference();
b = curr.next.compareAndSet(succ, succ, false, true);
if (Ib) continue;
pred.next.compareAndSet(curr, succ, false, false);
return true;

Remove

public boolean remove(T object) {

boolean b;

while (true) {
Window window = find(head, object);
Node pred = window.pred, curr = window.curr;
if (curr.object != object)

return false; Try to mark node

Node succ = curr.next.getReference(); as deleted
b = curr.next.compareAndSet(succ, succ, false, true);:
if (Ib) continue;
pred.next.compareAndSet(curr, succ, false, false);
return true;

}
}

Remove

public boolean remove(T object) {
boolean b;
while (true) {
Window window = find(head, object);
Node pred = window.pred, curr = window.curr;
if (curr.object != object)
return false;
Node succ = curr.next.getReference();
b = curr.next.compareAndSet(succ, succ, false, true);
| if (Ib) continue; L If it fails, retry, otherwise job done
pred.next.compareAndSet(curr, succ, false, false);
return true;

Remove

public boolean remove(T object) {

boolean b;

while (true) {
Window window = find(head, object);
Node pred = window.pred, curr = window.curr;
if (curr.object != object)

return false;

Node succ = curr.next.getReference();
b = curr.next.compareAndSet(succ, succ, false, true);
if (Ib) continue;

pred.next.compareAndSet(curr, succ, false, false);
return true;

—=
} Try to advance reference
} (if it fails, someone else did or will advance it)

Add

public boolean add(T object) {
while (true) {
Window window = find(head, object);
Node pred = window.pred, curr = window.curr;
if (curr.object == object)
return false;
Node n = new Node(object);
n.next = new AtomicMarkableReference(curr, false);
if (pred.next.compareAndSet(curr, n, false, false))
return true;

Add

public boolean add(T object) {
while (true) {
Window window = find(head, object);
Node pred = window.pred, curr = window.curr;

if (curr.object == object) Already there
return false;

Node n = new Node(object);

n.next = new AtomicMarkableReference(curr, false);

if (pred.next.compareAndSet(curr, n, false, false))
return true;

Add

public boolean add(T object) {
while (true) {
Window window = find(head, object);
Node pred = window.pred, curr = window.curr;
if (curr.object == object)

Create new node
return false;

Node n = new Node(object);]
n.next = new AtomicMarkableReference(curr, false);

if (pred.next.compareAndSet(curr, n, false, false))
return true;

Add

public boolean add(T object) {
while (true) {
Window window = find(head, object);
Node pred = window.pred, curr = window.curr;
if (curr.object == object)
return false;

Node n = new Node(object);
n.next = new AtomicMarkableReference(curr, false);

if (pred.next.compareAndSet(curr, n, false, false))

return true; Install new node, else retry loop

Wait-Free Contains

public boolean contains(T object) {

boolean marked[] = new boolean[1];
int key = object.hashCode();
Node curr = this.head,;
while (curr.key <= key) {

if (object == curr.object)

break;

curr = curr.next;
Y
curr.next.get(marked);
return (object == curr.object && !marked|[0]);

}

Wait-Free Contains

public boolean contains(T object) {
boolean marked[] = new boolean[1];
int key = object.hashCode();
Node curr = this.head;
while (curr.key <= key) {

if (object == curr.object) Only difference from lazy list is

break; that we get and check mark
curr = curr.next;

} =
curr.next.get(marked);
return (object == curr.object && !marked[0]);

}

Lock-Free Find

public Window find(Node head, T object) {
Node pred, curr, succ; int key = object.hashCode();
boolean[] marked = { false }; boolean b;
retry: while (true) {
pred = head; curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[0]){ ... }
if ((curr.key == key && curr.object == object)
[l curr.key > key)
return new Window(pred, curr);
pred = curr; curr = SUcc;
Y
}
}

Lock-Free Find

public Window find(Node head, T object) {
Node pred, curr, succ; int key = object.hashCode();
boolean[l marked = { false J; boole nets)icart if list changes while traversed
[retry: while (true) { F‘
pred = head; curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[0]){ ... }
if ((curr.key == key && curr.object == object)
[l curr.key > key)
return new Window(pred, curr);
pred = curr; curr = SUcc;
Y
}
}

Lock-Free Find

public Window find(Node head, T object) {
Node pred, curr, succ; int key = object.hashCode();
boolean[] marked = { false }; boolean b;
retry: while (true) {

[pred = head; curr = pred.next.getReference();

Start
Ffrom head

while (true) {
succ = curr.next.get(marked);
while (marked[0]){ ... }
if ((curr.key == key && curr.object == object)

[l curr.key > key)
return new Window(pred, curr);

pred = curr; curr = SUcc;

Y

}
}

Lock-Free Find

public Window find(Node head, T object) {
Node pred, curr, succ; int key = object.hashCode();
boolean[] marked = { false }; boolean b;
retry: while (true) {
pred = head; curr = pred.next.getReference();
[while (true) { L. Move down the list
succ = curr.next.get(marked);
while (marked[0]){ ... }
if ((curr.key == key && curr.object == object)
[l curr.key > key)
return new Window(pred, curr);
pred = curr; curr = SUcc;
Y
}
}

Lock-Free Find

public Window find(Node head, T object) {
Node pred, curr, succ; int key = object.hashCode();
boolean[] marked = { false }; boolean b;
retry: while (true) {
pred = head; curr = pred.next.getReference();
while (true) {
[succ = curr.next.get(marked); r Get successor and mark
while (marked[0]){ ... }
if ((curr.key == key && curr.object == object)
[l curr.key > key)
return new Window(pred, curr);
pred = curr; curr = SUcc;
Y
¥
}

Lock-Free Find

public Window find(Node head, T object) {
Node pred, curr, succ; int key = object.hashCode();
boolean[] marked = { false }; boolean b;
retry: while (true) {
pred = head; curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
| while (marked[0]) { ... } ™ Try to remove deleted nodes
if ((curr.key == key && curr.object == object)
[l curr.key > key)
return new Window(pred, curr);
pred = curr; curr = SUcc;
Y
}
}

Lock-Free Find

public Window find(Node head, T object) {
Node pred, curr, succ; int key = object.hashCode();
boolean[] marked = { false }; boolean b;
retry: while (true) {
pred = head; curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[0]){ ... }

if ((curr.key == key && curr.object == object)
Il curr.key > key)
return new Window(pred, curr);

pred = curr; curr = SUcc;

}
}

If found object or
greater key, return
pred and curr

Lock-Free Find

public Window find(Node head, T object) {
Node pred, curr, succ; int key = object.hashCode();
boolean[] marked = { false }; boolean b;
retry: while (true) {
pred = head; curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[0]){ ... }
if ((curr.key == key && curr.object == object)
[l curr.key > key)
return new Window(pred, curr);

[pred = CUIT; CUIT = SUCC;]
—
; Otherwise advance window
} and loop again

}

Lock-Free Find

while (marked[0]) {
b = pred.next.compareAndSet(curr, succ, false, false);
if (Ib) continue retry;
CUrr = Succ;
succ = curr.next.get(marked);

}

Lock-Free Find

Try to_snip out node

[\-A-/.hile (marked][0]) {

b = pred.next.compareAndSet(curr, succ, false, false);
if (Ib) continue retry;

curr = Succ;

succ = curr.next.get(marked);

}

Concurrency: Foundations and Algorithms —

94

while (marked[0]) {

Lock-Free Find

b = pred.next.compareAndSet(curr, succ, false, false);

if (Ib) continue retry:

r~ If predecessor’s next field changed

curr = Succ;
succ = curr.next.get(marked);

}

must retry whole traversal

Concurrency: Foundations and Algorithms —

94

Lock-Free Find

while (marked[0]) {
b = pred.next.compareAndSet(curr, succ, false, false);
if (Ib) continue retry;

[

CUrr = SUCC;
succ = curr.next.get(marked);

Otherwise move on to check if
next node deleted

}

Concurrency: Foundations and Algorithms —

94

Summary: Lock-Free List

» AtomicMarkableReference atomically updates mark and
reference

> Prevents manipulation of logically-removed next pointer
> Lock-free add() and remove()

» Remove performs logical removal, may leave node
> Lock-free find() traverses both marked and removed nodes

> Physically clean up (remove) marked nodes

Concurrency: Foundations and Algorithms — 95

Ops/s

Performance

Lock-free list
— Lazy list

/ Optimistic list
—

Coarse grained

Fine grained
Threads

Concurrency: Foundations and Algorithms — 96

Performance

On 16 node shared memory machine
Benchmark throughput of Java List-based Set
algs. Vary % of Contains() method Calls.

© Herlihy-Shavit

97

1.2e+07
1e+07
8e+06
6e+06
4e+0
2e+(

High Contains Ratio
Ops/sec (90% reads/ 10% updates)

i K |
R
S

- xR B | g

R g oy R

S i n g

n - n .
i/
Tttt
R N N N N NReNs

-—-X Lock-free
- M Lazy list

%ﬂfﬂf%\%ﬁﬁﬁ Course Grained

< Fine Lock-coupling

Low Contains Ratio

Ops/sec (50% reads/ 50% updates)

3.5e+06
X

3e+06 - % %%%% 1 Lock-free
2.5e+06 - %%% /./;% ‘m *\I . IT/’? g 'Q Lazy list

2e+06 ~ + _ m® QR -

m-
1.5e+06 _ m T
| =
Te+06 - 1
500000 'W~ Course Grained
0 " &-60Lo-6-5-06-010--0-O-0-5+0-0-—-0—-D Fine Lock-coupling

5 10 15 20 25 30
threads

As Contains Ratio Increases

Ops/sec (32 threads/0 load)

| &
= <))

60 70 80

% Contains()

90

Lock-free
Lazy list

Course Grained
Fine Lock-coupling

Summary

» Four “generic” approaches to concurrent data
structure design

» Fine-grained locking
» Optimistic synchronization
» Lazy synchronization

» Lock-free synchronization

Concurrency: Foundations and Algorithms — 101

“To Lock or Not to Lock™

» Locking vs. non-blocking
» Extremist views on both sides

» Nobler to compromise, combine locking and non-
blocking

» Example: Lazy list combines blocking add() and
remove() and a wait-free contains()

» Blocking/non-blocking is a property of a method

Concurrency: Foundations and Algorithms — 102

