

Prof. Christof Fetzer
TU Dresden

FOUNDATIONS OF CONCURRENT AND DISTRIBUTED SYSTEMS

- LINEARIZABILITY -

© 2009 Herlihy and Shavit

“Linearizability”

Prof. Christof Fetzer

(Based on the book and slides
The Art of Multiprocessor Programming

by Maurice Herlihy and Nir Shavit and Pascal Felber)

Concurrent Objects and Consistency

Concurrent Computation

Memory

Object Object

Th
re

ad
s

3

Objectivism

➤What is a concurrent object?
➤ How do we describe one?
➤ How do we implement one?
➤ How do we tell tell if we’re right?

4

This lecture

FIFO Queue: Enqueue Method

5

q.enq()

FIFO Queue: Dequeue Method

6

q.deq()/

Implementation: enq()

7

public class Queue {
 int head = 0, tail = 0;
 Object[QSIZE] items;

 public synchronized
 void enq(Object x) {
 while (tail – head == QSIZE)
 this.wait();
 items[tail % QSIZE] = x;
 tail++;
 this.notifyAll();
 } …
}

0 1
QSIZE-1

2

head tail

y z

Method execution is
mutually exclusive

Release lock if need
to wait

Here is where the
queue is actually
updated!Notify all others that you

release the lock

Implementation: deq()

8

public class Queue {
 int head = 0, tail = 0;
 Object[QSIZE] items;

 public synchronized
 Object deq() {
 while (tail – head == 0)
 this.wait();
 Object x = items[head % QSIZE];
 head++;
 this.notifyAll();
 return x;
 } …
}

0 1
QSIZE-1

2

head tail

y z

We understand it is “correct” because
all modifications are mutually exclusive…

A Concurrent Implementation

➤Now consider the following implementation
➤ The same thing without mutual exclusion

➤For simplicity, only two threads:
➤ One thread only calls enq()
➤ The other only deq()

9

Lock-free 2-Thread Queue

10

public class LockFreeQueue {
 volatile int head = 0,
 tail = 0;
 Object[QSIZE] items;
 public void enq(Item x) {
 while (tail-head == QSIZE); // busy-wait
 items[tail % QSIZE] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % QSIZE]; head++;
 return item;
 }
}

0 1
QSIZE-1

2

head tail

y z

How do we define “correct” when
modifications are not exclusive?

Queue
updated
without

lock

Lock-free 2-Thread Queue

11

public class LockFreeQueue {
 volatile int head = 0,
 tail = 0;
 Object[QSIZE] items;
 public void enq(Item x) {
 if (tail-head == QSIZE)

throw new Full();
 items[tail % QSIZE] = x; tail++;
 }
 public Item deq() {
 while (tail == head)

throw new Empty();
 Item item = items[head % QSIZE]; head++;
 return item;
 }
}

0 1
QSIZE-1

2

head tail

y z

How do we define “correct” when
modifications are not exclusive?

Defining “Correct”

➤ Need a way to specify a concurrent queue object

➤ Need a way to prove that an algorithm implements the
object’s specification

➤ Lets talk about object specifications…

12

Sequential Objects

➤ Each object has a state

➤ Usually given by a set of fields

➤ Queue example: sequence of items

➤ Each object has a set of methods

➤ Only way to manipulate state

➤ Queue example: enq() and enq() methods

13

Sequential Specifications

➤ If (precondition)…
➤ The object is in such-and-such a state…
➤ Before you call the method…

➤ Then (postcondition)…
➤ The method will return a particular value…
➤ Or throw a particular exception…

➤ And (postcondition, con’t)…
➤ The object will be in some other state…
➤ When the method returns

14

Pre- and Postconditions: deq()

➤ Precondition
➤ Queue is non-empty

➤ Postcondition
➤ Returns first item in queue

➤ Postcondition
➤ Removes first item in queue

15

Pre- and Postconditions: deq()

➤ Precondition
➤ Queue is empty

➤ Postcondition
➤ Throws Empty exception

➤ Postcondition
➤ Queue state unchanged

16

Why Sequential Specifications Totally Rock

➤ Interactions among methods captured by side-effects
on object state
➤ State meaningful between method calls

➤ Documentation size linear in number of methods
➤ Each method described in isolation

➤ Can add new methods
➤ Without changing descriptions of old methods

➤ What About Concurrent Specifications?
➤ Methods? Documentation? Adding new methods?

17

Methods Take Time

18

Invocation
12:00

q.enq() void

Response
12:01

Time

Method call

Sequential vs. Concurrent

➤ Sequential

➤ Methods take time? Who knew?

➤ Concurrent

➤ Method call is not an event

➤ Method call is an interval

19

Method call

Method callMethod call

Concurrent Methods Take Overlapping Time

20

Time

Sequential vs. Concurrent

Sequential
➤ Object needs meaningful state only

between method calls

➤ Each method described in isolation

➤ Can add new methods without
affecting older methods

Concurrent
➤ Because method calls overlap,

object might never be between
method calls

➤ Must characterize all possible
interactions with concurrent calls

➤ What if 2 enq() overlap?
Or 2 deq()? Or enq() and
deq()?

➤ Everything can potentially interact
with everything else

21

PANIC!

The Big Question

➤ What does it mean for a concurrent object to be
correct?

➤ What is a concurrent FIFO queue?

➤ FIFO means strict temporal order

➤ Concurrent means ambiguous temporal order

22

Intuitively…

23

public class Queue {
 int head = 0, tail = 0;
 Object[QSIZE] items;

 public synchronized
 void enq(Object x) {
 while (tail – head == QSIZE)
 this.wait();
 items[tail % QSIZE] = x;
 tail++;
 this.notifyAll();
 } …
}

0 1
QSIZE-1

2

head tail

y z

Queue is updated
while holding lock
(mutually exclusive)

Intuitively…

24

Time

Lets capture the idea of describing
the concurrent via the sequential

q.enq()

q.deq()
lock() unlock()deq()

enq() deq()

enq()lock() unlock()

Behavior is
sequential!

Linearizability

➤ Each method should

➤ “Take effect”

➤ Instantaneously

➤ Between invocation and response events

➤ Object is correct if this “sequential” behavior is correct

➤ Any such concurrent object is linearizable

➤ Formally, a linearizable object is an object all of
whose possible executions are linearizable

25

q.enq(x)

FIFO Queue Example

26

Time

q.enq(y) q.deq():x

q.deq():y

Linearizable

q.enq(x)

FIFO Queue Example

27

Time

q.enq(y)

q.deq():y

Not linearizable

q.enq(x)

FIFO Queue Example

28

Time

q.deq():x

Linearizable

q.enq(x)

FIFO Queue Example

29

Time

q.enq(y) q.deq():x

q.deq():y

Linearizable

Multiple orders OK

write(0)

Read/Write Register Example

30

Time

write(1) read():0

read():1 write(2)

Not linearizable

write(1) already happened

write(0)

Read/Write Register Example

31

Time

write(1) read():1

read():1 write(2)

Not linearizable

write(1) already happened

write(0)

Read/Write Register Example

32

Time

write(1) read():1

write(2)

Linearizable

write(0)

Read/Write Register Example

33

Time

write(1) read():2

read():1 write(2)

write(1) already happened

Linearizable

Talking About Executions

➤ Why do we need to consider executions?

➤ Can’t we specify the linearization point of each
operation without describing an execution?

➤ Not Always

➤ In some cases, linearization point depends on the
execution

➤ Let’s define a formal model of executions

➤ Define precisely what we mean (ambiguity is bad)
➤ Allow reasoning, formal or informal

34

Formal Definition:
Split Method Calls into Two Events

➤ Invocation

➤ Method name & arguments

 q.enq(x)

➤ Response

➤ Result or exception

 q.enq(x) returns void

 q.deq() returns x

 q.deq() throws Empty
35

A q.enq(x)

Invocation Notation

36

Thread

Object

Method

Arguments

Response Notation

37

A q:void

Thread

Object

Result

Met
ho

d i
s

im
pli

cit

Response Notation

38

A q:Empty()

Thread

Object

Exception

Met
ho

d i
s

im
pli

cit

History: Describing an Execution

39

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

Sequence of
invocations and

responses

H =

Definition

➤ Invocation & response match if

40

A q.enq(3)
A q:void

Thread
names
agree

Object names agree

Method call

Object Projections

41

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H =

A q.enq(3)
A q:void

B q.deq()
B q:3

H|q =

Thread Projections

42

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H = B p.enq(4)
B p:void
B q.deq()
B q:3

H|B =

Complete Subhistory

43

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

H =

An invocation is
pending if it has no
matching response

May or may not
have taken effect
⇒ discard pending

invocations

Complete Subhistory

44

A q.enq(3)
A q:void

B p.enq(4)
B p:void
B q.deq()
B q:3

Complete(H) =

Sequential Histories

45

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

H =

Match

Match

Match

Final pending
invocation OK

Method calls of

different

threads do not

interleave

Well-Formed Histories

46

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

H =

B p.enq(4)
B p:void
B q.deq()
B q:3

H|B =

A q.enq(3)
A q:voidH|A =

Per-thread projections
are sequential

Equivalent Histories

47

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

H =

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

G =

Threads see the same
thing in both histories

H|A = G|A
H|B = G|B

Sequential Specifications

➤ A sequential specification is some way of telling
whether a…

➤ Single-thread, single-object history…

➤ Is legal

➤ Simple way is using…

➤ Pre and post-conditions…

➤ But plenty of other techniques exist

48

Legal Histories

➤ A sequential (multi-object) history H is legal if

➤ For every object x

➤ H|x is in the sequential specification for x

49

Precedence

50

A q.enq(3)
B p.enq(4)
B p:void
A q:void
B q.deq()
B q:3

H =

A method call precedes
another if response event
precedes invocation event

q.deq():3q.enq(3)

Non-Precedence

51

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

H =

Some method calls
overlap one another

q.deq():3

q.enq(3)

Notation

➤ Given
➤ History H
➤ Method executions m0 and m1 in H

➤ We say m0 ➔H m1, if
➤ m0 precedes m1

➤ Relation ➔H is a
➤ Partial order
➤ Total order if H is sequential

52

m0 m1

Linearizability

➤ History H is linearizable if it can be extended to G by

➤ Appending zero or more responses to pending
invocations

➤ Discarding other pending invocations
➤ So that G is equivalent to

➤ Legal sequential history S

➤ Where ➔G ⊂ ➔S

53

c

What is ➔G ⊂ ➔S?

54

Time

b

A limitation on
the choice of S!a

➔G = {a!c, b!c}
➔S = {a!b, a!c, b!c}

➔
G

➔G

➔S

Remarks

➤ Some pending invocations

➤ Took effect, so keep them

➤ Discard the rest

➤ Condition ➔G ⊂ ➔S

➤ Means that S respects “real-time order” of G

55

q.enq(6)

Example

56

Time

q.enq(4) q.deq():4

q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

Complete this pending invocation

q.enq(6)

Example

57

Time

q.enq(4) q.deq():4

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

Complete this pending invocation

q.enq(3)

Added response
Discard this one

Example

58

Time

q.enq(4) q.deq():4

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Equivalent
Sequential

history

Locality Theorem

➤ History H is linearizable if and only if

➤ For every object x

➤ H|x is linearizable

➤ We care about objects only!

➤ Why Does Locality Matter?

➤ Modularity

➤ Can prove linearizability of objects in isolation

➤ Can compose independently-implemented objects
59

Linearizability: Locking

60

public class Queue {
 int head = 0, tail = 0;
 Object[QSIZE] items;

 public synchronized
 void enq(Object x) {
 while (tail – head == QSIZE)
 this.wait();
 items[tail % QSIZE] = x;
 tail++;
 this.notifyAll();
 } …
}

0 1
QSIZE-1

2

head tail

y z

As we said, the
linearization order is
order lock acquired

Linearizability: Lock-free

61

public class LockFreeQueue {
 volatile int head = 0,
 tail = 0;
 Object[QSIZE] items;
 public void enq(Item x) {
 while (tail-head == QSIZE); // busy-wait
 items[tail % QSIZE] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % QSIZE]; head++;
 return item;
 }
}

0 1
QSIZE-1

2

head tail

y z

Linearization order is order
head and tail fields modified

Strategy

➤ Identify one atomic step where method “happens”

➤ Critical section

➤ Machine instruction

➤ Does not always work

➤ Might need to define several different steps for
a given method

62

Alternative: Sequential Consistency

➤ History H is sequentially consistent if it can be extended to
G by

➤ Appending zero or more responses to pending
invocations

➤ Discarding other pending invocations

➤ So that G is equivalent to a

➤ Legal sequential history S

➤ Where ➔G ⊂ ➔S
63

Differs from linearizability

Alternative: Sequential Consistency

➤ No need to preserve real-time order

➤ Cannot re-order operations done by the same thread
(keep program order)

➤ Can re-order non-overlapping operations done by
different threads

➤ Often used to describe multiprocessor memory
architectures

64

q.enq(x)

Example

65

Time

q.enq(y)

q.deq():y

Not linearizable

Yet sequentially

consistent!

Theorem

➤ Sequential consistency is not a local property

 (and thus we lose composability…)

66

FIFO Queue Example

67

Time

p.enq(x) q.enq(x) p.deq():y

q.enq(y) p.enq(y) q.deq():x

History H

H|p Sequentially Consistent

68

Time

p.enq(x) q.enq(x) p.deq():y

q.enq(y) p.enq(y) q.deq():x

H|q Sequentially Consistent

69

Time

p.enq(x) q.enq(x) p.deq():y

q.enq(y) p.enq(y) q.deq():x

Ordering Imposed by p and q

70

Time

p.enq(x) q.enq(x) p.deq():y

p.enq(y) q.deq():xq.enq(y)

Cannot satisfy both!

Fact

➤ Most hardware architectures do not support sequential
consistency

➤ Because they think it is too strong

➤ Here is another story…

71

The Flag Example

➤ Each thread’s view is sequentially consistent
➤ It went first

➤ Entire history is not sequentially consistent
➤ Cannot both go first

➤ Is this behavior really so wrong?

72

Time

x.write(1) y.read():0

y.write(1) x.read():0
x=y=0;

Opinion 1: It is Wrong!

➤ This pattern

➤ Write mine, read yours

➤ Is exactly the flag principle

➤ Beloved of Alice and Bob

➤ Heart of mutual exclusion

➤ Peterson

➤ Bakery, etc.

➤ It is non-negotiable!
73

Opinion 2: But It Feels So Right…

➤ Many hardware architects think that sequential
consistency is too strong

➤ Too expensive to implement in modern hardware

➤ OK if flag principle

➤ Violated by default

➤ Honoured by explicit request

74

Memory Hierarchy

➤ On modern multiprocessors, processors do not read and
write directly to memory

➤ Memory accesses are very slow compared to processor
speeds

➤ Instead, each processor reads and writes directly to a
cache

➤ To read a memory location: load data into cache and
read from cache

➤ To write a memory location: update cached copy and
lazily write cached data back to memory

75

While Writing to Memory

➤ A processor can execute hundreds, or even thousands of
instructions

➤ Why delay on every memory write?

➤ Instead, write back in parallel with rest of the program

76

Revisionist History

➤ Flag violation history is actually OK

➤ Processors delay writing to memory

➤ Until after reads have been issued

➤ Otherwise unacceptable delay between read and write
instructions

➤ Who knew you wanted to synchronize?

77

➤ Writing to memory = mailing a letter

➤ Vast majority of reads & writes

➤ Not for synchronization

➤ No need to idle waiting for post office

➤ If you want to synchronize

➤ Announce it explicitly

➤ Pay for it only when you need it

78

Synchronizing

Explicit Synchronization

➤ Memory barrier instruction

➤ Flush unwritten caches

➤ Bring caches up to date

➤ Compilers often do this for you

➤ Entering and leaving critical sections

➤ Expensive

79

Volatile

➤ In Java, can ask compiler to keep a variable up-to-date
with volatile keyword

➤ Also inhibits reordering, removing from loops, & other
“optimizations”

80

Real-World Hardware Memory

➤ Weaker than sequential consistency

➤ But you can get sequential consistency at a price

➤ OK for experts, tricky stuff

➤ Assembly language, device drivers, etc.

➤ Know your architecture

➤ Linearizability more appropriate for high-level software

81

Critical Sections

➤ Easy way to implement linearizability

➤ Take sequential object

➤ Make each method a critical section

➤ Like synchronized methods in Java

➤ Problems

➤ Blocking

➤ No concurrency

82

Summary

➤ Linearizability

➤ Powerful specification tool for shared objects

➤ Allows us to capture the notion of objects being
“atomic”

➤ Operation takes effect instantaneously between
invocation and response

➤ Uses sequential specification, locality implies
composablity

➤ Good for high level objects
83

Summary

➤ Sequential Consistency

➤ Not composable

➤ Harder to work with

➤ Good way to think about hardware models

➤ We will use linearizability in the remainder of this
course unless stated otherwise

84

