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Objectivism

➤What is a concurrent object? 
➤ How do we describe one? 
➤ How do we implement one? 
➤ How do we tell tell if we’re right?
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This lecture



FIFO Queue: Enqueue Method
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q.enq( )



FIFO Queue: Dequeue Method
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q.deq()/ 



Implementation: enq()
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public class Queue { 
  int head = 0, tail = 0;  
  Object[QSIZE] items; 

  public synchronized 
  void enq(Object x) { 
    while (tail – head == QSIZE) 
      this.wait(); 
    items[tail % QSIZE] = x; 
    tail++; 
    this.notifyAll(); 
  } …
}

0 1
QSIZE-1

2

head tail

y z

Method execution is   
mutually exclusive

Release lock if need 
to wait

Here is where the 
queue is actually 
updated!Notify all others that you 

release the lock



Implementation: deq()

8

public class Queue { 
  int head = 0, tail = 0;  
  Object[QSIZE] items; 

  public synchronized 
  Object deq() { 
    while (tail – head == 0) 
      this.wait(); 
    Object x = items[head % QSIZE]; 
    head++; 
    this.notifyAll(); 
    return x;
  } … 
}

0 1
QSIZE-1

2

head tail

y z

We understand it is “correct” because 
all modifications are mutually exclusive…



A Concurrent Implementation

➤Now consider the following implementation 
➤ The same thing without mutual exclusion 

➤For simplicity, only two threads: 
➤ One thread only calls enq() 
➤ The other only deq()
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Lock-free 2-Thread Queue
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public class LockFreeQueue {
  volatile int head = 0, 
               tail = 0;  
  Object[QSIZE] items;
  public void enq(Item x) { 
    while (tail-head == QSIZE); // busy-wait 
    items[tail % QSIZE] = x; tail++; 
  } 
  public Item deq() { 
    while (tail == head); // busy-wait 
    Item item = items[head % QSIZE]; head++; 
    return item; 
  }
}

0 1
QSIZE-1

2

head tail

y z

How do we define “correct” when 
modifications are not exclusive?

Queue 
updated 
without 

lock



Lock-free 2-Thread Queue
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public class LockFreeQueue {
  volatile int head = 0, 
               tail = 0;  
  Object[QSIZE] items;
  public void enq(Item x) { 
    if (tail-head == QSIZE)

throw new Full(); 
    items[tail % QSIZE] = x; tail++; 
  } 
  public Item deq() { 
    while (tail == head)

throw new Empty(); 
    Item item = items[head % QSIZE]; head++; 
    return item; 
  }
}

0 1
QSIZE-1

2

head tail

y z

How do we define “correct” when 
modifications are not exclusive?



Defining “Correct”

➤ Need a way to specify a concurrent queue object 

➤ Need a way to prove that an algorithm implements the 
object’s specification 

➤ Lets talk about object specifications…
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Sequential Objects

➤ Each object has a state 

➤ Usually given by a set of fields 

➤ Queue example: sequence of items 

➤ Each object has a set of methods 

➤ Only way to manipulate state 

➤ Queue example: enq() and enq() methods
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Sequential Specifications

➤ If (precondition)… 
➤ The object is in such-and-such a state… 
➤ Before you call the method… 

➤ Then (postcondition)… 
➤ The method will return a particular value… 
➤ Or throw a particular exception… 

➤ And (postcondition, con’t)… 
➤ The object will be in some other state… 
➤ When the method returns
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Pre- and Postconditions: deq()

➤ Precondition 
➤ Queue is non-empty 

➤ Postcondition 
➤ Returns first item in queue 

➤ Postcondition 
➤ Removes first item in queue
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Pre- and Postconditions: deq()

➤ Precondition 
➤ Queue is empty 

➤ Postcondition 
➤ Throws Empty exception 

➤ Postcondition 
➤ Queue state unchanged
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Why Sequential Specifications Totally Rock

➤ Interactions among methods captured by side-effects 
on object state 
➤ State meaningful between method calls 

➤ Documentation size linear in number of methods 
➤ Each method described in isolation 

➤ Can add new methods 
➤ Without changing descriptions of old methods 

➤ What About Concurrent Specifications? 
➤ Methods? Documentation? Adding new methods?
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Methods Take Time
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Invocation 
12:00

q.enq(   ) void

Response 
12:01

Time

Method call



Sequential vs. Concurrent

➤ Sequential 

➤ Methods take time? Who knew? 

➤ Concurrent 

➤ Method call is not an event 

➤ Method call is an interval
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Method call

Method callMethod call

Concurrent Methods Take Overlapping Time
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Time



Sequential vs. Concurrent

Sequential
➤ Object needs meaningful state only 

between method calls 

➤ Each method described in isolation 

➤ Can add new methods without 
affecting older methods

Concurrent
➤ Because method calls overlap, 

object might never be between 
method calls 

➤ Must characterize all possible 
interactions with concurrent calls  

➤ What if 2 enq() overlap? 
Or 2 deq()? Or enq() and 
deq()? 

➤ Everything can potentially interact 
with everything else
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PANIC!



The Big Question

➤ What does it mean for a concurrent object to be 
correct? 

➤ What is a concurrent FIFO queue? 

➤ FIFO means strict temporal order 

➤ Concurrent means ambiguous temporal order
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Intuitively…
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public class Queue { 
  int head = 0, tail = 0;  
  Object[QSIZE] items; 

  public synchronized 
  void enq(Object x) { 
    while (tail – head == QSIZE) 
      this.wait(); 
    items[tail % QSIZE] = x; 
    tail++; 
    this.notifyAll(); 
  } …
}

0 1
QSIZE-1

2

head tail

y z

Queue is updated 
while holding lock 
(mutually exclusive)



Intuitively…
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Time

Lets capture the idea of describing  
the concurrent via the sequential 

q.enq()

q.deq()
lock() unlock()deq()

enq() deq()

enq()lock() unlock()

Behavior is 
sequential!



Linearizability

➤ Each method should 

➤ “Take effect” 

➤ Instantaneously 

➤ Between invocation and response events 

➤ Object is correct if this “sequential” behavior is correct 

➤ Any such concurrent object is linearizable 

➤ Formally, a linearizable object is an object all of 
whose possible executions are linearizable
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q.enq(x)

FIFO Queue Example
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Time

q.enq(y) q.deq():x

q.deq():y

Linearizable



q.enq(x)

FIFO Queue Example
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Time

q.enq(y)

q.deq():y

Not linearizable



q.enq(x)

FIFO Queue Example

28

Time

q.deq():x

Linearizable



q.enq(x)

FIFO Queue Example
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Time

q.enq(y) q.deq():x

q.deq():y

Linearizable

Multiple orders OK



write(0)

Read/Write Register Example
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Time

write(1) read():0

read():1 write(2)

Not linearizable

write(1) already happened



write(0)

Read/Write Register Example
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Time

write(1) read():1

read():1 write(2)

Not linearizable

write(1) already happened



write(0)

Read/Write Register Example
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Time

write(1) read():1

write(2)

Linearizable



write(0)

Read/Write Register Example
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Time

write(1) read():2

read():1 write(2)

write(1) already happened

Linearizable



Talking About Executions

➤ Why do we need to consider executions? 

➤ Can’t we specify the linearization point of each 
operation without describing an execution? 

➤ Not Always 

➤ In some cases, linearization point depends on the 
execution 

➤ Let’s define a formal model of executions 

➤ Define precisely what we mean (ambiguity is bad) 
➤ Allow reasoning, formal or informal
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Formal Definition: 
Split Method Calls into Two Events

➤ Invocation 

➤ Method name & arguments 

 q.enq(x) 

➤ Response 

➤ Result or exception 

 q.enq(x) returns void 

 q.deq() returns x 

 q.deq() throws Empty
35



A q.enq(x)

Invocation Notation
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Thread

Object

Method

Arguments



Response Notation
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A q:void

Thread

Object

Result

Met
ho
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Response Notation
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A q:Empty()

Thread

Object

Exception

Met
ho

d i
s 

im
pli

cit



History: Describing an Execution
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A q.enq(3) 
A q:void
A q.enq(5) 
B p.enq(4) 
B p:void
B q.deq() 
B q:3

Sequence of 
invocations and 

responses

H =



Definition

➤ Invocation & response match if

40

A  q.enq(3) 
A  q:void

Thread 
names 
agree

Object names agree

Method call



Object Projections
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A q.enq(3) 
A q:void
B p.enq(4) 
B p:void
B q.deq() 
B q:3

H =

A q.enq(3) 
A q:void

B q.deq() 
B q:3

H|q =



Thread Projections

42

A q.enq(3) 
A q:void
B p.enq(4) 
B p:void
B q.deq() 
B q:3

H = B p.enq(4) 
B p:void
B q.deq() 
B q:3

H|B =



Complete Subhistory
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A q.enq(3) 
A q:void
A q.enq(5) 
B p.enq(4) 
B p:void
B q.deq() 
B q:3

H =

An invocation is 
pending if it has no 
matching response

May or may not 
have taken effect 
⇒ discard pending 

invocations



Complete Subhistory
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A q.enq(3) 
A q:void

B p.enq(4) 
B p:void
B q.deq() 
B q:3

Complete(H) =



Sequential Histories
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A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

H =

Match

Match

Match

Final pending 
invocation OK

Method calls of 

different 

threads do not 

interleave



Well-Formed Histories
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A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

H =

B p.enq(4)
B p:void
B q.deq()
B q:3

H|B =

A q.enq(3)
A q:voidH|A =

Per-thread projections 
are sequential



Equivalent Histories
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A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

H =

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

G =

Threads see the same 
thing in both histories

H|A = G|A 
H|B = G|B



Sequential Specifications

➤ A sequential specification is some way of telling 
whether a… 

➤ Single-thread, single-object history… 

➤ Is legal 

➤ Simple way is using… 

➤ Pre and post-conditions… 

➤ But plenty of other techniques exist
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Legal Histories

➤ A sequential (multi-object) history H is legal if 

➤ For every object x 

➤ H|x is in the sequential specification for x
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Precedence
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A q.enq(3)
B p.enq(4)
B p:void
A q:void
B q.deq()
B q:3

H =

A method call precedes 
another if response event 
precedes invocation event

q.deq():3q.enq(3)



Non-Precedence
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A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

H =

Some method calls 
overlap one another

q.deq():3

q.enq(3)



Notation

➤ Given  
➤ History H 
➤ Method executions m0 and m1 in H  

➤ We say m0 ➔H m1, if 
➤  m0 precedes m1 

➤ Relation ➔H is a 
➤ Partial order  
➤ Total order if H is sequential
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m0 m1



Linearizability

➤ History H is linearizable if it can be extended to G by 

➤ Appending zero or more responses to pending 
invocations 

➤ Discarding other pending invocations 
➤ So that G is equivalent to 

➤ Legal sequential history S  

➤ Where ➔G ⊂ ➔S
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c

What is ➔G ⊂ ➔S?
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Time

b

A limitation on 
the choice of S!a

➔G = {a!c, b!c} 
➔S = {a!b, a!c, b!c}

➔
G

➔G

➔S



Remarks

➤ Some pending invocations 

➤ Took effect, so keep them 

➤ Discard the rest 

➤ Condition ➔G ⊂ ➔S 

➤ Means that S respects “real-time order” of G
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q.enq(6)

Example

56

Time

q.enq(4) q.deq():4

q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

Complete this pending invocation



q.enq(6)

Example

57

Time

q.enq(4) q.deq():4

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6) 
A q:void

Complete this pending invocation

q.enq(3)

Added response
Discard this one



Example
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Time

q.enq(4) q.deq():4

B q.enq(4)
B q:void
A q.enq(3) 
A q:void
B q.deq() 
B q:4

q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq() 
B q:4
A q:void

Equivalent 
Sequential 

history



Locality Theorem

➤ History H is linearizable if and only if 

➤ For every object x 

➤ H|x is linearizable 

➤ We care about objects only! 

➤ Why Does Locality Matter? 

➤ Modularity  

➤ Can prove linearizability of objects in isolation 

➤ Can compose independently-implemented objects
59



Linearizability: Locking 
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public class Queue { 
  int head = 0, tail = 0;  
  Object[QSIZE] items; 

  public synchronized 
  void enq(Object x) { 
    while (tail – head == QSIZE) 
      this.wait(); 
    items[tail % QSIZE] = x; 
    tail++; 
    this.notifyAll(); 
  } …
}

0 1
QSIZE-1

2

head tail

y z

As we said, the 
linearization order is 
order lock acquired



Linearizability: Lock-free
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public class LockFreeQueue {
  volatile int head = 0, 
               tail = 0;  
  Object[QSIZE] items;
  public void enq(Item x) { 
    while (tail-head == QSIZE); // busy-wait 
    items[tail % QSIZE] = x; tail++; 
  } 
  public Item deq() { 
    while (tail == head); // busy-wait 
    Item item = items[head % QSIZE]; head++; 
    return item; 
  }
}

0 1
QSIZE-1

2

head tail

y z

Linearization order is order 
head and tail fields modified



Strategy

➤ Identify one atomic step where method “happens” 

➤ Critical section 

➤ Machine instruction 

➤ Does not always work 

➤ Might need to define several different steps for 
a given method
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Alternative: Sequential Consistency

➤ History H is sequentially consistent if it can be extended to 
G by 

➤ Appending zero or more responses to pending 
invocations 

➤ Discarding other pending invocations 

➤ So that G is equivalent to a 

➤ Legal sequential history S 

➤ Where ➔G  ⊂ ➔S
63

Differs from linearizability



Alternative: Sequential Consistency

➤ No need to preserve real-time order 

➤ Cannot re-order operations done by the same thread 
(keep program order) 

➤ Can re-order non-overlapping operations done by 
different threads 

➤ Often used to describe multiprocessor memory 
architectures
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q.enq(x)

Example

65

Time

q.enq(y)

q.deq():y

Not linearizable

Yet sequentially 

consistent!



Theorem

➤ Sequential consistency is not a local property 

 (and thus we lose composability…)
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FIFO Queue Example

67

Time

p.enq(x) q.enq(x) p.deq():y

q.enq(y) p.enq(y) q.deq():x

History H



H|p Sequentially Consistent
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Time

p.enq(x) q.enq(x) p.deq():y

q.enq(y) p.enq(y) q.deq():x



H|q Sequentially Consistent
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Time

p.enq(x) q.enq(x) p.deq():y

q.enq(y) p.enq(y) q.deq():x



Ordering Imposed by p and q
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Time

p.enq(x) q.enq(x) p.deq():y

p.enq(y) q.deq():xq.enq(y)

Cannot satisfy both!



Fact

➤ Most hardware architectures do not support sequential 
consistency 

➤ Because they think it is too strong 

➤ Here is another story…
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The Flag Example

➤ Each thread’s view is sequentially consistent 
➤ It went first 

➤ Entire history is not sequentially consistent 
➤ Cannot both go first 

➤ Is this behavior really so wrong?

72

Time

x.write(1) y.read():0

y.write(1) x.read():0
x=y=0;



Opinion 1: It is Wrong!

➤ This pattern 

➤ Write mine, read yours 

➤ Is exactly the flag principle 

➤ Beloved of Alice and Bob 

➤ Heart of mutual exclusion 

➤ Peterson 

➤ Bakery, etc. 

➤ It is non-negotiable!
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Opinion 2: But It Feels So Right…

➤ Many hardware architects think that sequential 
consistency is too strong 

➤ Too expensive to implement in modern hardware 

➤ OK if flag principle 

➤ Violated by default 

➤ Honoured by explicit request
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Memory Hierarchy

➤ On modern multiprocessors, processors do not read and 
write directly to memory 

➤ Memory accesses are very slow compared to processor 
speeds 

➤ Instead, each processor reads and writes directly to a 
cache 

➤ To read a memory location: load data into cache and 
read from cache 

➤ To write a memory location: update cached copy and 
lazily write cached data back to memory
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While Writing to Memory

➤ A processor can execute hundreds, or even thousands of 
instructions  

➤ Why delay on every memory write? 

➤ Instead, write back in parallel with rest of the program
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Revisionist History

➤ Flag violation history is actually OK 

➤ Processors delay writing to memory 

➤ Until after reads have been issued 

➤ Otherwise unacceptable delay between read and write 
instructions 

➤ Who knew you wanted to synchronize?

77



➤ Writing to memory = mailing a letter 

➤ Vast majority of reads & writes 

➤ Not for synchronization 

➤ No need to idle waiting for post office 

➤ If you want to synchronize 

➤ Announce it explicitly 

➤ Pay for it only when you need it

78

Synchronizing



Explicit Synchronization

➤ Memory barrier instruction 

➤ Flush unwritten caches 

➤ Bring caches up to date 

➤ Compilers often do this for you 

➤ Entering and leaving critical sections 

➤ Expensive

79



Volatile

➤ In Java, can ask compiler to keep a variable up-to-date 
with volatile keyword 

➤ Also inhibits reordering, removing from loops, & other 
“optimizations”

80



Real-World Hardware Memory

➤ Weaker than sequential consistency 

➤ But you can get sequential consistency at a price 

➤ OK for experts, tricky stuff 

➤ Assembly language, device drivers, etc. 

➤ Know your architecture 

➤ Linearizability more appropriate for high-level software
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Critical Sections

➤ Easy way to implement linearizability 

➤ Take sequential object 

➤ Make each method a critical section 

➤ Like synchronized methods in Java 

➤ Problems 

➤ Blocking 

➤ No concurrency
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Summary

➤ Linearizability 

➤ Powerful specification tool for shared objects 

➤ Allows us to capture the notion of objects being 
“atomic” 

➤ Operation takes effect instantaneously between 
invocation and response 

➤ Uses sequential specification, locality implies 
composablity 

➤ Good for high level objects
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Summary

➤ Sequential Consistency 

➤ Not composable 

➤ Harder to work with 

➤ Good way to think about hardware models 

➤ We will use linearizability in the remainder of this 
course unless stated otherwise
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