Formal Foundations for SCONE attestation and Intel SGX Data
Center Attestation Primitives
Extended Abstract

Muhammad Usama Sardar
TU Dresden
Dresden, Germany
muhammad_usama.sardar@mailbox.tu-dresden.de

ABSTRACT

One of the essential features of confidential computing is the ability
to attest to an application remotely. Remote attestation ensures that
the right code is running in the correct environment. We need to
ensure that all components that an adversary might use to impact
the integrity, confidentiality, and consistency of an application are
attested. Which components need to be attested is defined with the
help of a policy. Verification of the policy is performed with the
help of an attestation engine. Since remote attestation bootstraps
the trust in remote applications, any vulnerability in the attestation
mechanism can therefore impact the security of an application.
Moreover, mistakes in the attestation policy can result in data, code,
and secrets being vulnerable. Our work focuses on 1) how we can
verify the attestation mechanisms and 2) how to verify the policy
to ensure that data, code, and secrets are always protected.

CCS CONCEPTS

« Security and privacy — Distributed systems security; Logic
and verification.

KEYWORDS
Confidential Computing, Attestation

ACM Reference Format:

Muhammad Usama Sardar and Christof Fetzer. 2021. Formal Foundations
for SCONE attestation and Intel SGX Data Center Attestation Primitives :
Extended Abstract. In Proceedings of ACM PaveTrust Workshop (PaveTrust’21).
ACM, New York, NY, USA, 3 pages.

1 INTRODUCTION

Traditionally, we establish trust in an application bottom up. We
ensure that the computers executing the application are hosted in
a data center with sufficient physical security. The hypervisor and
the operating system are maintained correctly by trusted operation
staff. These days, we want to host applications in environments
that the application owner does not control. The application owner
wants to outsource the hardware management, hypervisor, operat-
ing systems, and container infrastructure to external entities like

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PaveTrust’21, December 2021, Online

© 2021 Copyright held by the owner/author(s).

Christof Fetzer
TU Dresden
Dresden, Germany
christof fetzer@tu-dresden.de

m 7 g -
L]

7 same?

e Uup-to-date?

environment

in trusted
e environment?

D tust
. Lco

ed?

Lesl

client

Figure 1: To ensure that integrity, confidentiality and consis-
tency in hostile environments, we need establish trust into
various components using attestation.

a cloud provider. The application owner might even want to out-
source the management of the application to an external provider.
The provider might be under different jurisdictions, and hence, we
might need to ensure that the provider can read or modify the data,
code, and secrets of the application.

One of the leading technical difficulties is that a hypervisor or an
operating system can read an application’s memory. In other words,
it is quite a challenge to protect an application from a provider in
control of the hypervisor or the operating system or the application
that wants to access an application. Confidential computing enables
application owners to protect applications and establish trust in
their applications top-down.

An application owner outsources the computing infrastructure
management to a provider that she cannot legally trust. Hence, we
need to consider a new threat model: the adversary might have
root access to all layers of our computing infrastructure, i.e., man-
agement access to the servers and all system software.

Confidential computing protects applications by permitting an
application to run inside of encrypted memory regions. We call such
aregion an enclave. Only the application code running inside of the
enclave can see the code, data, and secrets stored in this encrypted
memory region in the clear. All other software and hardware can
only see encrypted data. Any modification of this region by other
code or hardware will either be prevented or at least detected.



PaveTrust’21, December 2021, Online

When creating an enclave, we have a problem on how to boot-
strap trust in the enclave. A loader creates this enclave. How can we
establish trust in the loader or establish trust in the loaded enclave?
Some systems use a trusted loader with a known public key: each
computer has a unique public key. The application owner could
encrypt the content of an enclave with the help of this public key.
The loader can decrypt the content inside its enclave, create a new
enclave, and transfer it via an encrypted channel.

A trusted loader approach raises some technical challenges. First,
we would need to provide an encryption key for all trusted loaders.
This requirement would limit the use of generic container images.
Moreover, any loader executing on a server affected by a security
advisory could compromise the encrypted content.

Our general approach is to establish trust in the loaded enclave
instead. An untrusted loader creates the enclave. We establish trust
in the created enclave with the help of attestation. Attestation is a
testimony as to the truth of a matter. In the context of confidential
computing, we use attestation to establish trust in an application
started inside of an enclave.

With the help of attestation, we want to ensure the integrity,
confidentiality, and consistency of an application’s data, code, and
secrets. In other words, we want to ensure that we can trust the
output of an application (integrity and consistency) and that the
data was not leaked (confidentiality). Since our threat model as-
sumes that adversaries might have root access, we need to verify
various conditions (see Fig 1):

e the code and data initially loaded in the enclave is up-to-date
and not modified,

o the enclave is executed on a CPU with up-to-date hardware
and firmware,

o the state of the container image or the volumes is correct
has not been modified,

e the enclave runs on a specific set of hosts only (optionally),

o the enclave is not cloned (optionally)

In the future, we expect that we will attest to additional compo-
nents. For example, that the operating system and the hypervisor
are correctly booted.

2 ATTESTATION AND VERIFICATION

An attestor signs a report as part of the attestation. A report as-
sociates a measurement with some other data. For example, the
measurement could be a secure hash value of the initial enclave
state. Additionally, the report might contain the public key of an
enclave. An application owner creates a policy that defines the
expected measurements. The policy defines the initial state of the
enclave. A policy could also require the state of the operating sys-
tem, i.e., it could limit what operating systems can be loaded and
what applications can be executed [3]. The policy can also specify a
set of hosts on which the enclave can run. It can define how many
of the instances of the enclave can run at any point in time.

SCONE [1] is a platform that enables the transformation of na-
tive services into confidential services. The policy can be generated
automatically as part of transforming a native application into a
confidential computation. A confidential service is automatically at-
tested and verified by SCONE. Only if a service satisfies its security
policy, it receives its secrets (see Fig 2).

M.U. Sardar et al

services: .
- name: service
attestation: 1 attest and verify

- mrenclave:

Tvi
- 2c4de8cbe672.. g° e

secrets: SCONE @~

- name: client CA

- name: service cert

client_CA

- name: private_ key

service_cert

private_key

Figure 2: Services are automatically attested during startup.
After verification against the service policy, a service gets
access to its secrets.

For any complex software and hardware system, we have to
expect security vulnerabilities. Attestation enables us to deal with
security vulnerabilities effectively. If there is any known security
vulnerability on a certain host, we need to mitigate these before
our application is permitted to execute. For example, we have ex-
perienced that in some Kubernetes clusters, not all servers were
running the newest firmware. The confidential applications cannot
run on these servers since they do not pass the verification. Kuber-
netes will detect that the startup failed and will eventually restart
the service on a different node.

For Intel SGX, a large variety of security vulnerabilities have
been published, e.g., [2, 6, 8]. Some of the vulnerabilities, like side-
channel attacks, are outside of the original threat model of Intel
SGX and need to be mitigated in different ways. For all known
vulnerabilities of Intel SGX, Intel issues security advisories and
issues firmware patches. However, in some cases, like Load-Value
Injection [7] only new CPU hardware can efficiently fix the issue.
We verify during attestation of an enclave if the underlying platform
is affected by a security advisory. If software mitigations are in
place, we can specify in its policy that we can tolerate this security
advisory.

There are various approaches to mitigate side-channel attacks.
We can mitigate these attacks using oblivious memory and/or fine-
grain randomization. However, this requires a recompilation of
the binaries. Moreover, oblivious memory introduces a very high
runtime overhead. We support an attestation-based approach [3]
with minimal runtime overhead. The idea is that we perform a load
time and runtime attestation of the operating system. Any side-
channel attack requires the execution of a program to perform this
attack. Such an attack would be detected using runtime attestation.
Only known benign programs are permitted to be started. The
runtime attestation will prevent the start of any unknown program.
Also, this will result in the stop of the enclaves running on this
host.

A modern cloud-native application consists of a set of services.
These services communicate via the network with each other. One
can ensure that a service is part of the same application with the
help of implicit attestation. Each service is provisioned with service



Formal Foundations for SCONE attestation and Intel SGX Data Center Attestation Primitives

. mutual ‘

attestation
SCONE CAS SCONE CAS

#ISCONE @~ #JSCONE @~

secrets:

secrets:

- name: client cert : client_cert

export: .. ey @XpPOTrt: ..

- name: server_cert - name: server_cert

import: .. > export: ..

Figure 3: Implicit attestation of communication partners us-
ing mTLS.

and client certificates as part of the attestation process. The client
and service certificates are issued by a certificate authority that
is unique for each application instance (see Fig 3). This ensures
that only services belonging to the same application instance can
communicate with each other via mTLS (mutual TLS).

3 FORMAL METHODS

We investigate the use of formal methods to verify the attestation
mechanism as well as the policies.

SCONE supports both Intel Attestation Service as well as Intel
DCAP [5]. The Intel Data Center Attestation Primitives (DCAP)
is a third-party attestation service to enable data centers to create
their own attestation infrastructures. These services address the
availability concerns and improve the performance compared to
the remote attestation based on Enhanced Privacy ID (EPID).

Since remote attestation bootstraps the trust in remote applica-
tions, any vulnerability in the attestation mechanism can therefore
impact the security of an application. The lack of formal proof for
DCAP might cause security concerns. To fill this gap, we propose
an automated, rigorous, and sound formal approach to specify and
verify the remote attestation based on Intel SGX DCAP under the
assumption that there are no side-channel attacks and no vulner-
abilities inside the enclave [4]. In this approach, the data center
configuration and operational policies are specified to generate the
symbolic model, and security goals are specified as security proper-
ties to produce verification results. The evaluation of non-Quoting
Verification Enclave-based DCAP indicates that the confidential-
ity of secrets and data integrity is preserved against a Dolev-Yao
adversary in this technology.

An application consists of a set of services. Each service is asso-
ciated with a policy that defines how to attest and verify the service
and which secrets we want to provision to the service. Having a
large number of policies, it can become quite complex to ensure

PaveTrust’21, December 2021, Online

that all components of an application are indeed sufficiently pro-
tected. Our research focuses on how to verify automatically that
the policies of an application protect all code, data, and secrets:

e Can only services - except the ingress service - of the appli-
cation communicate only with each other?

e Data at rest is always protected and only accessible by the
services of the application?

o Administrators of the service cannot see any secrets nor any
data?

e Any change of a policy requires approval by the application
owner?

e Can we perform secure software updates?

Our general approach is to be able to answer these questions
automatically using formal methods.

4 CONCLUSION

Many security attacks exploit known vulnerabilities. Attestation
enables the enforcement of advanced cyber-hygiene. We can ensure
that only up-to-date application code runs inside enclaves on top of
up-to-date firmware and hardware that mitigates all known security
advisories. Moreover, we can verify with the help of attestation that
services execute only on known hosts with an up-to-date operating
system and a limited number of applications.

Attestation is an essential component to ensure the security of
applications. Hence, we investigate the use of formal methods 1)
to ensure the correctness of the attestation mechanisms and 2) to
verify that the policies of an application sufficiently protect the
services, the data, the code, and the secrets of an application.

REFERENCES

[1] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L Still-
well, et al. 2016. {SCONE }: Secure linux containers with intel {SGX}. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({ OSDI}
16). 689-703.

[2] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. 2020. Plundervolt: Software-based fault injection attacks against
Intel SGX. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1466-1482.

[3] Wojciech Ozga, Do Le Quoc, and Christof Fetzer. 2020. A practical approach
for updating an integrity-enforced operating system. In Proceedings of the 21st
International Middleware Conference. 311-325.

[4] Muhammad Usama Sardar, Rasha Faqeh, and Christof Fetzer. 2020. Formal Founda-
tions for Intel SGX Data Center Attestation Primitives. In International Conference
on Formal Engineering Methods. Springer, 268-283.

[5] Vinnie Scarlata, Simon Johnson, James Beaney, and Piotr Zmijewski. 2018. Sup-
porting third party attestation for Intel SGX with Intel data center attestation
primitives. White paper (2018).

[6] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the intel {SGX} kingdom with transient
out-of-order execution. In 27th { USENIX} Security Symposium ({ USENIX} Security
18). 991-1008.

[7] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Marina Minkin,
Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens. 2020.
LVI: Hijacking transient execution through microarchitectural load value injection.
In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 54-72.

[8] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Riidiger Kapitza. 2016. Async-
Shock: Exploiting synchronisation bugs in Intel SGX enclaves. In European Sym-
posium on Research in Computer Security. Springer, 440-457.



	Abstract
	1 Introduction
	2 Attestation and Verification
	3 Formal methods
	4 Conclusion
	References

