Pay-as-you-go model

- easy to acquire and release resources
- time-varying resource demands
- when to get resources?
- how many to get?
- need for proper resource scaling mechanism

(a) Peak load allocation

(b) Average load allocation

(c) Ideal allocation
Auto-Scaling support from cloud providers

- Amazon\(^1\), RightScale\(^2\), Windows Azure\(^3\)
 - define metric, threshold, control period
 - define action (amount of resources to add/remove)
 - add \(n\) VMs if \(CPU\) load > 60%
- the burden of scaling still lies with user
- the user has to be an application expert
- proper testing and configuration

\(^1\) Amazon auto scaling service, http://aws.amazon.com/autoscaling/

\(^2\) Rightscale. Set up Autoscaling using Alert Escalations, http://support.rightscale.com/

A new model of buying and selling cloud computing

- fixed bundles (predefined VM templates, widely used model)
 - small (1vCPU, 1.7GB RAM)
 - medium (1vCPU, 3.75GB RAM)
 - large (2vCPU, 7.5GB RAM)
 - what if I need 2 vCPU, 5 GB?
 - 1 hour billing cycle

- flexible resource bundles
 - user can define VM size
 - CloudSigma
 - smaller billing cycles
 - CloudSigma (5min)
 - Google cloud (1min)

- more space for optimization

4 CloudSigma, IaaS provider, http://www.cloudsigma.com/
Outline

1. Challenges
2. Resource scaling aspects
3. Modeling techniques
4. Contribution
5. Future work
Challenges

- lack of knowledge about the application in the cloud
 - user does not have expertise knowledge
 - cloud provider cannot access the application
- time varying workload
 - demand for individual resource also changes
- mapping performance requirements (SLA) to available resources
 - how much CPU assign to WS VM to provide 100 ms response time?
- application updates
 - model change detection
 - scaling policy adaptation
- cluster-wide correlation
 - CPU saturation of DB leads higher memory usage of WS
 - resource allocation across all tiers
Cloud applications

- **interactive applications**
 - web applications serving HTTP clients
 - layered architecture, consist of tiers (WS, AS, DB)
 - demand may disproportionately impact a specific layer
 - sensitive to under-provisioning
 - metric: response time

- **batch workloads**
 - map reduce like apps
 - long running jobs
 - resource intensive
 - under-provisioning is not vital
 - metric: throughput
Scaling horizons

- **horizontal**
 - add/remove VM(server)
 - start VM < 1 minute\(^7\)
 - not everything may be scaled horizontally (PostgreSQL, Hadoop DataNode)
 - license fee

- **vertical**
 - resize VM
 - CPU (Xen cap, CPU hotplug; KVM cgroups)
 - RAM (Xen, KVM memory ballooning)
 - disk, network bandwidth control (cgroups)
 - plug CPU < 1 second\(^7\)
 - RAM becomes cheaper\(^8\)
 - limited by the host capacity

\(^7\) Dutta et al., “SmartScale: Automatic Application Scaling in Enterprise Clouds”, CLOUD ’12

\(^8\) Rowstron et al., “Nobody ever got fired for using Hadoop on a cluster”, HotCDP ’12
Managing capacity overload

- admission control
 - redirect requests (LB)
 - horizontal scaling

- prioritization
 - VM migration\(^9\)
 - performance degradation\(^{10,11}\)

- resources stealing \(^{12}\)
 - some servers run 24 h
 - MemCached, DB
 - use underutilized resource

\(^9\) Shen et al., “CloudScale: elastic resource scaling for multi-tenant cloud systems”, SOCC ’11

\(^{10}\) Nathuji, Kansal, and Ghaffarkhah, “Q-clouds: Managing Performance Interference Effects for QoS-aware Clouds”, EuroSys ’10

\(^{11}\) Yazdanov and Fetzer, “Vertical Scaling for Prioritized VMs Provisioning”, CGC ’12

\(^{12}\) Gandhi et al., “SOFTScale: stealing opportunistically for transient scaling”, Middleware ’12
When to provision

- predictive provisioning
 - workload patterns (daily, weekly, seasonal)
- reactive provisioning
 - flash crowds (slashdotting)
 - unplanned events (earthquake, flooding)
 - handling prediction errors
 - rule based approaches Amazon, RightScale
- combined
 - reactive + predictive
System modeling

Application

workload

resource entitlement

desired performance

resource utilization

QoS (response time, throughput)

Time

Demand
System modeling

- **offline**
 - high model accuracy
 - time consuming
 - changes on the controlled system require redesign of scaling policy

- **online**
 - live system
 - low resource overhead
 - careful system identification
 - long learning time
 - sand-boxing \(^{13,14}\)
 - does not affect production system
 - quick model adaptation
 - resource overhead (we need to host the 'sand-box')
 - infrastructure management complexity

\(^{13}\) Zheng et al., “JustRunIt: experiment-based management of virtualized data centers”, USENIX’09

\(^{14}\) Vasić et al., “DejaVu: accelerating resource allocation in virtualized environments”, ASPLOS XVII
Modeling techniques

- Control theory
- Queuing theory
- Time series
- Reinforcement learning
Control theory

- obtain "first principles"
 - vary inputs (resource capacity, workload)
 - observe output (app performance)
- controlled experiments
- high accuracy within control bounds
- adaptive control (online)
- offline model design
- requires controlled environment
- assumes linear performance model
Control theory (Related work)

- **Adaptive resource control**\(^{15}\)
 - CPU allocation for Web application
 - regulate CPU utilization to 80% to achieve desired RT

- **WS provisioning**\(^{16}\)
 - CPU and memory scaling
 - SISO model per each resource
 - regulate resource utilization

- **AutoControl**\(^{17}\)
 - Multi-tier application provisioning
 - CPU and disk I/O scaling
 - MIMO controller
 - ARMA model

\(^{15}\) Padala et al., “Adaptive control of virtualized resources in utility computing environments”, EuroSys ’07

\(^{16}\) Heo et al., “Memory overbooking and dynamic control of Xen virtual machines in consolidated environments”, IM’09

\(^{17}\) Padala et al., “Automated control of multiple virtualized resources”, EuroSys ’09
Queuing theory

- well fit for systems with stationary nature
- hard assumptions
 - arrival rate
 - service rate
- requires deep knowledge about system internals

Related work
- Web and App tier scaling18
 - peak load provisioning
- App tier scaling 19
 - regression based CPU usage approximation

19 Zhang, Cherkasova, and Smirni, “A Regression-Based Analytic Model for Dynamic Resource Provisioning of Multi-Tier Applications”, ICAC '07
Time series

- CPU, RAM usage traces
- repeating patterns, future value prediction
 - AR, MA, ARMA, FFT
- low overhead
- simple model
- long historical data
- sensitive to parameters values
Time series (Related work)

- **SmartScale**\(^7\)
 - polynomial approximation, workload prediction, VM (AS scaling) resizing (CPU, RAM)
- **CloudScale**\(^9\)
 - FFT, resource usage prediction (CPU or RAM)
 - VM migration
- **Press**\(^{20}\)
 - FFT, resource usage prediction (CPU)
- **AGILE**\(^{21}\)
 - wavelets transform, resource usage prediction (CPU)

\(^{7}\) Dutta et al., “SmartScale: Automatic Application Scaling in Enterprise Clouds”, CLOUD ’12

\(^{9}\) Shen et al., “CloudScale: elastic resource scaling for multi-tenant cloud systems”, SOCC ’11

\(^{20}\) Gong, Gu, and Wilkes, “PRESS: PRedictive Elastic ReSource Scaling for cloud systems”, CNSM ’10

\(^{21}\) Nguyen et al., “AGILE: Elastic Distributed Resource Scaling for Infrastructure-as-a-Service”, ICAC ’13
Reinforcement learning (RL)

- trial-and-error search
 - agent learns from experience
 - agent takes actions and observes environment
- Q-learning algorithm
 - exploration (ε-greedy policy)
 - exploitation

![Diagram of reinforcement learning](image)
RL. Q-learning, initialization

Horizontal scaling

Legend:
- state
 - U, W - VMs allocated
 - W - workload
- transition
 - [a, q, r]
 - a - action, add/release n VMs
 - q - value
 - r - reward
RL. Q-learning, exploration

action selection:
- random
- guided exploration

Q-value update:
$$Q(s,a) = Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

- α - learning rate (0.5)
- r - reward
- $\gamma \in [0, 1]$ - discount factor (0.8)

Reward:
- application performance
- resource usage

Example:
- $r = 0.3, \alpha = 1$
- $q = 0 + \alpha (0.3 + \gamma 0 - 0) = 0.3$
RL. Q-learning, exploitation

- **ε - greedy policy**
 - perform exploration with ϵ probability

- **State complexity**
 - N- variations for resource (1 to 10 VMs)
 - M- variations for workload (10, 20, 30,.., 100 req/sec)
 - states number N*M

- **Vertical scaling**
 - (CPU, RAM, Workload) → states number N*K*M
Reinforcement learning (cont)

- no a priori knowledge is required
- large state space
- long learning time

Related work

- VCONF22 (CPU scaling, NN approximation)
- VirtRL23 (AS scaling)
- CoTuner24 (CPU, RAM scaling, downhill simplex method, less states)
- URL25 (CPU, RAM scaling, NN approximation)

22 Rao et al., “VCONF: a reinforcement learning approach to virtual machines auto-configuration”, ICAC ’09

23 Dutreilh et al., “From Data Center Resource Allocation to Control Theory and Back”, CLOUD ’10

24 Bu, Rao, and Xu, “A Model-free Learning Approach for Coordinated Configuration of Virtual Machines and Appliances”, MASCOTS ’11

Related work summary

Legend:
WS(Web server), AS(Application server), DB(database)
RR(request rate), RT(response time)

<table>
<thead>
<tr>
<th>Ref</th>
<th>Auto-scaling technique</th>
<th>H/V Scaling</th>
<th>Target tier</th>
<th>Metric</th>
<th>Workload</th>
<th>Sys. Modeling</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>[22]</td>
<td>RL</td>
<td>V(CPU)</td>
<td>AS</td>
<td>CPU, RT</td>
<td>Synt.</td>
<td>Online</td>
<td>RUBiS, TPC-W</td>
</tr>
</tbody>
</table>
Model change detection

- SLA violation
 - first occurrence\(^{13}\)
- workload classification\(^{14}\)
 - bidding, browsing
- repeated misdirection\(^{20}\)

\(^{13}\) Zheng et al., “JustRunIt: experiment-based management of virtualized data centers”, USENIX’09

\(^{14}\) Vasić et al., “DejaVu: accelerating resource allocation in virtualized environments”, ASPLOS XVII

\(^{20}\) Gong, Gu, and Wilkes, “PRESS: PRedictive Elastic ReSource Scaling for cloud systems”, CNSM ’10
interactive and batch applications
- interactive has high priority
 - rent resources from neighbor VM
 - give back unused resources
- resource: CPU
- AR based short-term CPU usage prediction

11 Yazdanov and Fetzer, “Vertical Scaling for Prioritized VMs Provisioning”, CGC ’12
interactive application
state(MEM, CPU) - VM capacity
action(add, keep remove)
parallel learning with assumption
- use observation from new state
 - resource usage
 - application performance
- update transitions to the states with enough resources

\[\text{State 1 [768:40]}\]
\[\text{State 2 [768:55]}\]
\[\text{State 3 [768:45]}\]
\[\text{State 4 [768:50]}\]
\[\text{State 5 [768:35]}\]

Action 1: (keep, add 15)
Action 2: (keep, add 5)
Action 3: (keep, add 10)
Action 4: (keep, remove 5)

\[\text{26 Yazdanov and Fetzer, “VScaler: Autonomic Virtual Machine Scaling”, CLOUD’13}\]
VScaler: Autonomic VM scaling (cont.)

- StandardRL
 - long convergence time
- VScalerRL
 - quickly finds optimal policy

![Cost per time step ($) vs Time (min)](chart.png)
VScalerLight

(a) CPU vs response time

(b) RAM vs response time

\(^{27}\)accepted CLOUD 2014)
interactive application

- 2-tiers: WS, DB

- state-space size reduction from $N \times M$ complexity to N and M

- models updated in parallel

- CPU, response time control

- RAM, avoid swapping
Future work

- multi-tier web application
- short time scaling (seconds)
 - adjust VM resource allocation (vertical)
- long term scaling (hours)
 - horizontal scaling
Future work

- map-reduce applications resource allocation
 - slower VM less costs
 - job completion time control
Thank you